INSERTION-OF-IDEAL-FACTORS-PROPERTY

Sang Ha Baek, Jung Min Han, Eun Ji Kim, Ju Hee Kim, Jung Soo Kim, Min Jae Kim, Pyeong-geun Kim, Changyoon Yi, Dong Geun Lee, Seung Yeop Lee,
Dae Jae Seo, Yang Lee, and Sung Ju Ryu*

Abstract

Due to Bell, a ring R is usually said to be $I F P$ if $a b=0$ implies $a R b=0$ for $a, b \in R$. It is shown that if $f(x) g(x)=0$ for $f(x)=$ $a_{0}+a_{1} x$ and $g(x)=b_{0}+\cdots+b_{n} x^{n}$ in $R[x]$, then $(f(x) R[x])^{2 n+2} g(x)=0$. Motivated by this results, we study the structure of the IFP when proper ideals are taken in place of R, introducing the concept of insertion-of-ideal-factors-property (simply, IIFP) as a generalization of the IFP. A ring R will be called an IIFP ring if $a b=0$ (for $a, b \in R$) implies $a I b=0$ for some proper nonzero ideal I of R, where R is assumed to be nonsimple. We in this note study the basic structure of IIFP rings.

1. Introduction

Insertion-of-Factors-Property has done important roles in noncommutative ring theory and module theory. Throughout this note every ring is an associative ring with identity unless otherwise stated. Given a ring R, let $N(R)$ and $N_{*}(R)$ denote the set of all nilpotent elements and the prime radical in R, respectively. The polynomial ring with an indeterminate x over R is denoted by $R[x]$. The n by n full (resp. upper triangular) matrix ring over R is denoted by $\operatorname{Mat}_{n}(R)$ (resp. $U_{n}(R)$), and denote by $e_{i j}$ the matrix with (i, j)-entry 1 and elsewhere zero. \mathbb{Z} denotes the ring of integers, and \mathbb{Z}_{n} denotes the ring of integers modulo n.

Due to Bell [4], a ring R (possibly without identity) is called to satisfy the insertion-of-factors-property (simply, an IFP ring) if $a b=0$ implies $a R b=0$ for $a, b \in R$. Narbonne [8] and Shin [10] used the terms semicommutative and SI for the IFP, respectively. A ring R (possibly without identity) is called reduced if $N(R)=0$. This insertion-of-factors-property unifies the commutativity and the reduced condition. But there exist many non-reduced commutative rings

[^0](e.g., $\mathbb{Z}_{n^{l}}$ for $n, l \geq 2$), and many noncommutative reduced rings (e.g., direct products of noncommutative domains). A ring is usually called Abelian if each idempotent is central. A simple computation yields that IFP rings are Abelian. It is also easily checked that $N(R)=N_{*}(R)$ for an IFP ring R.

Proposition 1.1. Let R be an IFP ring.
(1) If $f(x) g(x)=0$ for $f(x)=a_{0}+a_{1} x$ and $g(x)=b_{0}+\cdots+b_{n} x^{n}$ in $R[x]$, then

$$
(f(x) R[x])^{2 n+2} g(x)=0 .
$$

(2) If $f(x) g(x)=0$ for $f(x)=a_{0}+\cdots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x$ in $R[x]$, then

$$
f(x)(R[x] g(x))^{2 m+2}=0 .
$$

Proof. (1) Let $f(x)=a_{0}+a_{1} x, g(x)=b_{0}+\cdots+b_{n} x^{n} \in R[x]$ such that $f(x) g(x)=0$. Then

$$
\begin{aligned}
& a_{0} b_{0}=0 \\
& a_{0} b_{i}+a_{1} b_{i-1}=0 \text { for } i=1, \ldots, n, \\
& a_{1} b_{n}=0
\end{aligned}
$$

We will use the IFP of R freely. Note $a_{0} R b_{0}=0$ and $a_{1} R b_{n}=0$. Then we also obtain

$$
\begin{aligned}
a_{0}^{2} b_{1} & =a_{0}\left(a_{0} b_{1}+a_{1} b_{0}\right)=0 \\
a_{0}^{3} b_{2} & =a_{0}^{2}\left(a_{0} b_{2}+a_{1} b_{1}\right)=0, \\
& \ldots \\
a_{0}^{i+1} b_{i} & =a_{0}^{i}\left(a_{0} b_{i}+a_{1} b_{i-1}\right)=0 \text { for } i=3,4, \ldots, n, \\
& \ldots \\
a_{0}^{n+1} b_{n} & =a_{0}^{n}\left(a_{0} b_{n}+a_{1} b_{n-1}\right)=0 .
\end{aligned}
$$

Similarly we can obtain

$$
a_{1}^{i} b_{n-(i-1)}=0 \text { for } i=2, \ldots, n+1
$$

Next consider the case of $n=1$, i.e., $g(x)=b_{0}+b_{1} x$. Then we obtain

$$
a_{0} R b_{0}=a_{0} R a_{0} R b_{1}=0 \text { and } a_{1} R b_{1}=a_{1} R a_{1} R b_{0}=0
$$

from $a_{0} b_{0}=0, a_{0}^{2} b_{1}=0, a_{1} b_{1}=0$, and $a_{1}^{2} b_{0}=0$. These yield

$$
a_{0} r_{1} a_{0} r_{2} b_{1}=a_{1} r_{3} a_{1} r_{4} b_{0}=0
$$

for all r_{i} 's in R; hence we moreover obtain

$$
\begin{aligned}
& f(x) s_{1} f(x) s_{2} f(x) s_{3} f(x) s_{4} g(x) \\
= & \left(a_{0}+a_{1} x\right) s_{1}\left(a_{0}+a_{1} x\right) s_{2}\left(a_{0}+a_{1} x\right) s_{3}\left(a_{0}+a_{1} x\right) s_{4}\left(b_{0}+b_{1} x\right)=0
\end{aligned}
$$

for all s_{i} 's in R since every coefficient of the expansion of $f(x) s_{1} f(x) s_{2} f(x)$ $s_{3} f(x) s_{4} g(x)$ contains at least two a_{0} 's or two a_{1} 's. Thus we now have

$$
f(x) R[x] f(x) R[x] f(x) R[x] f(x) R[x] g(x)=0
$$

Proceeding by induction on n, we can finally obtain

$$
(f(x) R[x])^{2 n+2} g(x)=0
$$

The proof of (2) is a symmetry one of (1).
In Proposition 1.1, consider the case of $m=n=1$. Then we have $f(x) R[x]$ $g(x)=0$ when $f(x) g(x)=0$ by [7, Proposition 1.3]. So $f(x) I g(x)=0$ for all ideals I of R.

Now we consider the case of substituting proper ideals for the whole ring in the definition of IFP rings, extending Proposition 1.1 to general situations.

Definition 1. A ring R is said to satisfy the insertion-of-ideal-factors-property (simply, called IIFP ring) if there exists a nonzero proper ideal I (if any) of R such that $a I b=0$ whenever $a b=0$ for $a, b \in R$. Simple rings are assumed to be IIFP.

IFP rings are clearly IIFP. But there exists IIFP rings but not IFP. For example, $\operatorname{Mat}_{n}(D)$ is non-Abelian and so this ring is not IFP where D is a simple ring and $n \geq 2$; but $M a t_{n}(D)$ is IIFP by definition.

Lemma 1.2. Let R be a simple ring. Then R is IFP if and only if R is a domain.

Proof. Let R be IFP and assume $a b=0$ for $a, b \in R$. Then $a R b=0$ and so $(R a R)(R b R)=0$. Thus we get $a=0$ or $b=0$ since R is simple. The converse is obvious.

For a ring R and $n \geq 2$, consider the subring

$$
D_{n}(R)=\left\{\left.\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right) \in U_{n}(R) \right\rvert\, a, a_{i j} \in R\right\}
$$

of $U_{n}(R)$. $U_{n}(R)$ for $n \geq 2$ need not be IIFP over an IIFP ring R by help of Example 1.4 to follow. But we can argue about the IIFP for $D_{n}(R)$ affirmatively.

Proposition 1.3. If a non-simple ring R is IIFP then $D_{n}(R)$ is IIFP for $n \geq 2$.

Proof. Let R be a non-simple IIFP ring and suppose that $A B=0$ for $A=$ $\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(R)$. Then $a_{11} b_{11}=0$. Since R is IIFP, there exists a nonzero proper ideal I of R such that $a_{11} I b_{11}=0$. Set

$$
J=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & I \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

Then J is a nonzero proper ideal of $D_{n}(R)$ which satisfies

$$
A J B=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & a_{11} I b_{11} \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)=0 .
$$

This implies that $D_{n}(R)$ is also IIFP.
Note that $D_{n}(R)$ cannot be IFP for $n \geq 4$ over any ring R by [6 , Example 1.3], comparing with Proposition 1.3.

It is natural to ask whether R is an IIFP ring if for any nonzero proper ideal I of $R, R / I$ and I are IIFP, where I is considered as an IIFP ring without identity. However the following example provides a negative answer.

Example 1.4. Let D be a division ring and $R=U_{2}(D)$. Then R is clearly not IFP and all ideals of R are

$$
I_{1}=\left(\begin{array}{cc}
D & D \\
0 & 0
\end{array}\right), I_{2}=\left(\begin{array}{cc}
0 & D \\
0 & D
\end{array}\right), \text { and } I_{3}=\left(\begin{array}{cc}
0 & D \\
0 & 0
\end{array}\right) .
$$

Note that each I_{k} is IFP as a subring of R without identity, and that each R / I_{k} is IFP, by [3, Example 5]. However R is not IIFP. For, $e_{11} e_{22}=0$ but $e_{11} I_{k} e_{22} \neq 0$ for all $k=1,2,3$.

Moreover Example 1.4 illuminates that the ring R is not IIFP too when we take the stronger condition " I is IFP" instead of " I is IIFP". However if we take the condition " I is reduced" then we may have an affirmative answer as in the following.

Proposition 1.5. If a ring R has a proper ideal which is reduced as a subring of R without identity, then R is IIFP.

Proof. Assume that I is a proper ideal of R which is reduced as a subring of R without identity. Let $a b=0$ for $a, b \in R$. Then $(b I a)^{2}=0$ and $b I a \subseteq I$. This yields $b I a=0$ since I is reduced. Accordingly, $((a I b) I)^{2}=a I(b I a) I b I=0$ and so $a I b I=0$ since I is reduced. This yields $(a I b)^{2} \subseteq a I b I=0$. But $a I b \subseteq I$, so we get $a I b=0$ since I is reduced. Thus R is IIFP.

IFP rings are both Abelian and IIFP. But the concepts of Abelian and IIFP are independent of each other by the following.

Example 1.6. (1) $M a t_{2}(D)$ is non-Abelian for any simple ring D; but $M a t_{2}(D)$ is IIFP by definition.
(2) We use the subring

$$
R=\left\{\left.\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right) \right\rvert\, a-b \equiv c \equiv 0(\bmod 2)\right\}
$$

of $\operatorname{Mat}_{2}(\mathbb{Z})$ in [5, Example 13]. Then R is Abelian by the argument in [5, Example 13].

Let I be any nonzero proper ideal of R. Then I must contain a matrix $\left(\begin{array}{ll}\alpha & \beta \\ 0 & \gamma\end{array}\right)$ with $\beta \neq 0$. So we have

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & \beta \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
0 & 4 \beta \\
0 & 0
\end{array}\right) \neq 0 .
$$

This entails

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right) I\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right) \neq 0
$$

But $\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right)=0$, so R is not IIFP.

2. Properties of IIFP rings

In this section we examine the IIFP of some ring extensions which have roles in ring theory. For a reduced ring R and $f(x), g(x) \in R[x]$, Armendariz [2, Lemma 1] proved that

$$
a b=0 \text { for all } a \in C_{f(x)}, b \in C_{g(x)} \text { whenever } f(x) g(x)=0 .
$$

Chhawchharia and Rege [9] called a ring Armendariz if it satisfies this property. So reduced rings are clearly Armendariz. This fact will be used freely in this note. Armendariz rings are Abelian by the proof of [1, Theorem 6] (or [5, Lemma 7]). The concepts of Armendariz and IFP are independent of each other by [9, Example 3.2] and [3, Example 14]. Also there exists an Aramendariz ring which is not IIFP by help of [3, Example 14].

A ring R is said to have the finite intersection property on ideals provided that every intersection of finite number of nonzero ideals remains nonzero.

Proposition 2.1. Let R be an Armendariz ring which has the finite intersection property on ideals. Then if R is IIFP then $R[x]$ is IIFP.

Proof. Let R be an IIFP and assume $f(x) g(x)=0$ for $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=$ $\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$. Then since R is Armendariz, $a_{i} b_{j}=0$ for all i, j. But since R is IIFP, there exist nonzero proper ideal $I_{i, j}$ of R such that

$$
a_{i} I_{i, j} b_{j}=0
$$

for any pair (i, j). Next set

$$
I=\bigcap_{i, j} I_{i, j}
$$

Since R has the finite intersection property on ideals, I is a nonzero proper ideal of R which satisfies

$$
a_{i} I b_{j}=0 \text { for all } i, j .
$$

This yields $f(x) I[x] g(x)=0$, noting that $I[x]$ is also a nonzero proper ideal of $R[x]$.

An element u of a ring R is right regular if $u r=0$ implies $r=0$ for $r \in R$. Similarly, left regular is defined, and regular means if it is both left and right regular (i.e., not a zero-divisor).
Proposition 2.2. Let R be a ring and M be an multiplicatively closed subset of central regular elements in R. Then R is IIFP if and only if $R M^{-1}$ is IIFP, where R and $R M^{-1}$ are both assumed to be non-simple.
Proof. Let R be an IIFP ring and assume $a m^{-1} b n^{-1}=0$. Then clearly $a b=0$. But since R is IIFP, there exists a nonzero proper ideal I of R such that $a I b=0$. Set $J=I M^{-1}$. Note that every element of J is of the form $s t^{-1}$ with $s \in I$ and $t \in M$ since I is an ideal of R. Then clearly J is a nonzero ideal of $R M^{-1}$ such that

$$
a m^{-1} s t^{-1} b n^{-1}=a s b m^{-1} t^{-1} n^{-1}=0
$$

for all $s t^{-1} \in J$. Here if $J \subsetneq R M^{-1}$ then we are done. If $J=R M^{-1}$, then $a m^{-1} K b n^{-1}=0$ for all nonzero proper ideals K of $R M^{-1}$.

Conversely, let $R M^{-1}$ is IIFP and assume $a b=0$ for $a, b \in R$. Then there exists a nonzero proper ideal J of $R M^{-1}$ such that $a J b=0$. Set

$$
I=\left\{s \in R \mid s t^{-1} \in J\right\} .
$$

Then I is an ideal of R such that $J=I M^{-1}$ from the computation that

$$
r s t^{-1}=r\left(s t^{-1}\right), s r t^{-1}=\left(s t^{-1}\right) r, s=s t^{-1} t \in J
$$

for $r \in R$ and $s t^{-1} \in J$. Since $I \subseteq J$, we have $a I b=0$. Moreover from $J \subsetneq R M^{-1}$, we get $I \subsetneq R$. Thus R is IIFP.

Recall the ring of Laurent polynomials in x, written by $R\left[x ; x^{-1}\right]$. Let $M=$ $\left\{1, x, x^{2}, \ldots\right\}$. Then M is clearly a multiplicatively closed subset of central regular elements in $R[x]$ such that $R\left[x ; x^{-1}\right]=M^{-1} R[x]$. So Proposition 2.2 leads to the following.
Corollary 2.3. Let R be a ring. Then $R[x]$ is IIFP if and only if $R\left[x ; x^{-1}\right]$ is IIFP.

The following is obtained from Proposition 2.1 and Corollary 2.3.
Corollary 2.4. Let R be an Armendariz ring which has the finite intersection property on ideals. Then if R is IIFP then both $R[x]$ and $R\left[x ; x^{-1}\right]$ are IIFP.

References

[1] D.D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), 2265-2272.
[2] E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
[3] C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751-761.
[4] H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368.
[5] N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488.
[6] N.K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207-223.
[7] T.K. Kwak, M.J. Lee, Y. Lee, On sums of coefficients of products of polynomials, Comm. Algebra 42 (2014), 4033-4046.
[8] L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.
[9] S. Chhawchharia, M.B. Rege, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17.
[10] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60.

Department of Mathematics
Pusan Science High School
Pusan 609-735, Korea
E-mail address: kjsccc@hanmail.net
Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-mail address: ylee@pusan.ac.kr
Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail address: sjryu@pusan.ac.kr

[^0]: Received June 22, 2014; Accepted August 14, 2014.
 2000 Mathematics Subject Classification. 16D25, 16S36.
 Key words and phrases. IIFP ring, IFP ring, polynomial ring, matrix ring.

 * Corresponding author.

