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Abstract. Due to Bell, a ring R is usually said to be IFP if ab = 0

implies aRb = 0 for a, b ∈ R. It is shown that if f(x)g(x) = 0 for f(x) =
a0+a1x and g(x) = b0+· · ·+bnxn in R[x], then (f(x)R[x])2n+2g(x) = 0.

Motivated by this results, we study the structure of the IFP when proper

ideals are taken in place of R, introducing the concept of insertion-of-
ideal-factors-property (simply, IIFP) as a generalization of the IFP. A

ring R will be called an IIFP ring if ab = 0 (for a, b ∈ R) implies aIb = 0

for some proper nonzero ideal I of R, where R is assumed to be non-
simple. We in this note study the basic structure of IIFP rings.

1. Introduction

Insertion-of-Factors-Property has done important roles in noncommutative
ring theory and module theory. Throughout this note every ring is an asso-
ciative ring with identity unless otherwise stated. Given a ring R, let N(R)
and N∗(R) denote the set of all nilpotent elements and the prime radical in R,
respectively. The polynomial ring with an indeterminate x over R is denoted
by R[x]. The n by n full (resp. upper triangular) matrix ring over R is denoted
by Matn(R) (resp. Un(R)), and denote by eij the matrix with (i, j)-entry 1
and elsewhere zero. Z denotes the ring of integers, and Zn denotes the ring of
integers modulo n.

Due to Bell [4], a ring R (possibly without identity) is called to satisfy the
insertion-of-factors-property (simply, an IFP ring) if ab = 0 implies aRb = 0 for
a, b ∈ R. Narbonne [8] and Shin [10] used the terms semicommutative and SI
for the IFP, respectively. A ring R (possibly without identity) is called reduced
if N(R) = 0. This insertion-of-factors-property unifies the commutativity and
the reduced condition. But there exist many non-reduced commutative rings
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(e.g., Znl for n, l ≥ 2), and many noncommutative reduced rings (e.g., direct
products of noncommutative domains). A ring is usually called Abelian if each
idempotent is central. A simple computation yields that IFP rings are Abelian.
It is also easily checked that N(R) = N∗(R) for an IFP ring R.

Proposition 1.1. Let R be an IFP ring.
(1) If f(x)g(x) = 0 for f(x) = a0 + a1x and g(x) = b0 + · · ·+ bnx

n in R[x],
then

(f(x)R[x])2n+2g(x) = 0.

(2) If f(x)g(x) = 0 for f(x) = a0 + · · ·+amx
m and g(x) = b0 + b1x in R[x],

then

f(x)(R[x]g(x))2m+2 = 0.

Proof. (1) Let f(x) = a0 + a1x, g(x) = b0 + · · · + bnx
n ∈ R[x] such that

f(x)g(x) = 0. Then

a0b0 = 0,

a0bi + a1bi−1 = 0 for i = 1, . . . , n,

a1bn = 0.

We will use the IFP of R freely. Note a0Rb0 = 0 and a1Rbn = 0. Then we also
obtain

a20b1 = a0(a0b1 + a1b0) = 0,

a30b2 = a20(a0b2 + a1b1) = 0,

· · ·
ai+1
0 bi = ai0(a0bi + a1bi−1) = 0 for i = 3, 4, . . . , n,

· · ·
an+1
0 bn = an0 (a0bn + a1bn−1) = 0.

Similarly we can obtain

ai1bn−(i−1) = 0 for i = 2, . . . , n+ 1.

Next consider the case of n = 1, i.e., g(x) = b0 + b1x. Then we obtain

a0Rb0 = a0Ra0Rb1 = 0 and a1Rb1 = a1Ra1Rb0 = 0

from a0b0 = 0, a20b1 = 0, a1b1 = 0, and a21b0 = 0. These yield

a0r1a0r2b1 = a1r3a1r4b0 = 0

for all ri’s in R; hence we moreover obtain

f(x)s1f(x)s2f(x)s3f(x)s4g(x)

=(a0 + a1x)s1(a0 + a1x)s2(a0 + a1x)s3(a0 + a1x)s4(b0 + b1x) = 0
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for all si’s in R since every coefficient of the expansion of f(x)s1f(x)s2f(x)
s3f(x)s4g(x) contains at least two a0’s or two a1’s. Thus we now have

f(x)R[x]f(x)R[x]f(x)R[x]f(x)R[x]g(x) = 0.

Proceeding by induction on n, we can finally obtain

(f(x)R[x])2n+2g(x) = 0.

The proof of (2) is a symmetry one of (1). �

In Proposition 1.1, consider the case of m = n = 1. Then we have f(x)R[x]
g(x) = 0 when f(x)g(x) = 0 by [7, Proposition 1.3]. So f(x)Ig(x) = 0 for all
ideals I of R.

Now we consider the case of substituting proper ideals for the whole ring in
the definition of IFP rings, extending Proposition 1.1 to general situations.

Definition 1. A ring R is said to satisfy the insertion-of-ideal-factors-property
(simply, called IIFP ring) if there exists a nonzero proper ideal I (if any) of R
such that aIb = 0 whenever ab = 0 for a, b ∈ R. Simple rings are assumed to
be IIFP.

IFP rings are clearly IIFP. But there exists IIFP rings but not IFP. For
example, Matn(D) is non-Abelian and so this ring is not IFP where D is a
simple ring and n ≥ 2; but Matn(D) is IIFP by definition.

Lemma 1.2. Let R be a simple ring. Then R is IFP if and only if R is a
domain.

Proof. Let R be IFP and assume ab = 0 for a, b ∈ R. Then aRb = 0 and so
(RaR)(RbR) = 0. Thus we get a = 0 or b = 0 since R is simple. The converse
is obvious. �

For a ring R and n ≥ 2, consider the subring

Dn(R) =




a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a

 ∈ Un(R) | a, aij ∈ R


of Un(R). Un(R) for n ≥ 2 need not be IIFP over an IIFP ring R by help of
Example 1.4 to follow. But we can argue about the IIFP for Dn(R) affirma-
tively.

Proposition 1.3. If a non-simple ring R is IIFP then Dn(R) is IIFP for
n ≥ 2.
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Proof. Let R be a non-simple IIFP ring and suppose that AB = 0 for A =
(aij), B = (bij) ∈ Dn(R). Then a11b11 = 0. Since R is IIFP, there exists a
nonzero proper ideal I of R such that a11Ib11 = 0. Set

J =


0 0 0 · · · I
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .

Then J is a nonzero proper ideal of Dn(R) which satisfies

AJB =


0 0 0 · · · a11Ib11
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 = 0.

This implies that Dn(R) is also IIFP. �

Note that Dn(R) cannot be IFP for n ≥ 4 over any ring R by [6, Example
1.3], comparing with Proposition 1.3.

It is natural to ask whether R is an IIFP ring if for any nonzero proper ideal
I of R, R/I and I are IIFP, where I is considered as an IIFP ring without
identity. However the following example provides a negative answer.

Example 1.4. Let D be a division ring and R = U2(D). Then R is clearly
not IFP and all ideals of R are

I1 =

(
D D
0 0

)
, I2 =

(
0 D
0 D

)
, and I3 =

(
0 D
0 0

)
.

Note that each Ik is IFP as a subring of R without identity, and that each
R/Ik is IFP, by [3, Example 5]. However R is not IIFP. For, e11e22 = 0 but
e11Ike22 6= 0 for all k = 1, 2, 3.

Moreover Example 1.4 illuminates that the ring R is not IIFP too when we
take the stronger condition “I is IFP” instead of “I is IIFP”. However if we
take the condition “I is reduced” then we may have an affirmative answer as
in the following.

Proposition 1.5. If a ring R has a proper ideal which is reduced as a subring
of R without identity, then R is IIFP.

Proof. Assume that I is a proper ideal of R which is reduced as a subring of R
without identity. Let ab = 0 for a, b ∈ R. Then (bIa)2 = 0 and bIa ⊆ I. This
yields bIa = 0 since I is reduced. Accordingly, ((aIb)I)2 = aI(bIa)IbI = 0 and
so aIbI = 0 since I is reduced. This yields (aIb)2 ⊆ aIbI = 0. But aIb ⊆ I, so
we get aIb = 0 since I is reduced. Thus R is IIFP. �

IFP rings are both Abelian and IIFP. But the concepts of Abelian and IIFP
are independent of each other by the following.
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Example 1.6. (1)Mat2(D) is non-Abelian for any simple ringD; butMat2(D)
is IIFP by definition.

(2) We use the subring

R =

{(
a c
0 b

)
| a− b ≡ c ≡ 0(mod 2)

}
of Mat2(Z) in [5, Example 13]. Then R is Abelian by the argument in [5,
Example 13].

Let I be any nonzero proper ideal of R. Then I must contain a matrix(
α β
0 γ

)
with β 6= 0. So we have(

2 0
0 0

)(
0 β
0 0

)(
0 0
0 2

)
=

(
0 4β
0 0

)
6= 0.

This entails (
2 0
0 0

)
I

(
0 0
0 2

)
6= 0.

But

(
2 0
0 0

)(
0 0
0 2

)
= 0, so R is not IIFP.

2. Properties of IIFP rings

In this section we examine the IIFP of some ring extensions which have
roles in ring theory. For a reduced ring R and f(x), g(x) ∈ R[x], Armendariz
[2, Lemma 1] proved that

ab = 0 for all a ∈ Cf(x), b ∈ Cg(x) whenever f(x)g(x) = 0.

Chhawchharia and Rege [9] called a ring Armendariz if it satisfies this property.
So reduced rings are clearly Armendariz. This fact will be used freely in this
note. Armendariz rings are Abelian by the proof of [1, Theorem 6] (or [5,
Lemma 7]). The concepts of Armendariz and IFP are independent of each other
by [9, Example 3.2] and [3, Example 14]. Also there exists an Aramendariz ring
which is not IIFP by help of [3, Example 14].

A ring R is said to have the finite intersection property on ideals provided
that every intersection of finite number of nonzero ideals remains nonzero.

Proposition 2.1. Let R be an Armendariz ring which has the finite intersec-
tion property on ideals. Then if R is IIFP then R[x] is IIFP.

Proof. Let R be an IIFP and assume f(x)g(x) = 0 for f(x) =
∑m

i=0 aix
i, g(x) =∑n

j=0 bjx
j ∈ R[x]. Then since R is Armendariz, aibj = 0 for all i, j. But since

R is IIFP, there exist nonzero proper ideal Ii,j of R such that

aiIi,jbj = 0
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for any pair (i, j). Next set

I =
⋂
i,j

Ii,j .

Since R has the finite intersection property on ideals, I is a nonzero proper
ideal of R which satisfies

aiIbj = 0 for all i, j.

This yields f(x)I[x]g(x) = 0, noting that I[x] is also a nonzero proper ideal of
R[x]. �

An element u of a ring R is right regular if ur = 0 implies r = 0 for r ∈ R.
Similarly, left regular is defined, and regular means if it is both left and right
regular (i.e., not a zero-divisor).

Proposition 2.2. Let R be a ring and M be an multiplicatively closed subset
of central regular elements in R. Then R is IIFP if and only if RM−1 is IIFP,
where R and RM−1 are both assumed to be non-simple.

Proof. Let R be an IIFP ring and assume am−1bn−1 = 0. Then clearly ab = 0.
But since R is IIFP, there exists a nonzero proper ideal I of R such that aIb = 0.
Set J = IM−1. Note that every element of J is of the form st−1 with s ∈ I
and t ∈M since I is an ideal of R. Then clearly J is a nonzero ideal of RM−1

such that
am−1st−1bn−1 = asbm−1t−1n−1 = 0

for all st−1 ∈ J . Here if J ( RM−1 then we are done. If J = RM−1, then
am−1Kbn−1 = 0 for all nonzero proper ideals K of RM−1.

Conversely, let RM−1 is IIFP and assume ab = 0 for a, b ∈ R. Then there
exists a nonzero proper ideal J of RM−1 such that aJb = 0. Set

I = {s ∈ R | st−1 ∈ J}.
Then I is an ideal of R such that J = IM−1 from the computation that

rst−1 = r(st−1), srt−1 = (st−1)r, s = st−1t ∈ J
for r ∈ R and st−1 ∈ J . Since I ⊆ J , we have aIb = 0. Moreover from
J ( RM−1, we get I ( R. Thus R is IIFP. �

Recall the ring of Laurent polynomials in x, written by R[x;x−1]. Let M =
{1, x, x2, . . .}. Then M is clearly a multiplicatively closed subset of central
regular elements in R[x] such that R[x;x−1] = M−1R[x]. So Proposition 2.2
leads to the following.

Corollary 2.3. Let R be a ring. Then R[x] is IIFP if and only if R[x;x−1] is
IIFP.

The following is obtained from Proposition 2.1 and Corollary 2.3.

Corollary 2.4. Let R be an Armendariz ring which has the finite intersection
property on ideals. Then if R is IIFP then both R[x] and R[x;x−1] are IIFP.
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