• Title/Summary/Keyword: fuzzy-c means

Search Result 449, Processing Time 0.046 seconds

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

A Simple Tandem Method for Clustering of Multimodal Dataset

  • Cho C.;Lee J.W.;Lee J.W.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.729-733
    • /
    • 2003
  • The presence of local features within clusters incurred by multi-modal nature of data prohibits many conventional clustering techniques from working properly. Especially, the clustering of datasets with non-Gaussian distributions within a cluster can be problematic when the technique with implicit assumption of Gaussian distribution is used. Current study proposes a simple tandem clustering method composed of k-means type algorithm and hierarchical method to solve such problems. The multi-modal dataset is first divided into many small pre-clusters by k-means or fuzzy k-means algorithm. The pre-clusters found from the first step are to be clustered again using agglomerative hierarchical clustering method with Kullback- Leibler divergence as the measure of dissimilarity. This method is not only effective at extracting the multi-modal clusters but also fast and easy in terms of computation complexity and relatively robust at the presence of outliers. The performance of the proposed method was evaluated on three generated datasets and six sets of publicly known real world data.

  • PDF

An Improved Automated Spectral Clustering Algorithm

  • Xiaodan Lv
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.185-199
    • /
    • 2024
  • In this paper, an improved automated spectral clustering (IASC) algorithm is proposed to address the limitations of the traditional spectral clustering (TSC) algorithm, particularly its inability to automatically determine the number of clusters. Firstly, a cluster number evaluation factor based on the optimal clustering principle is proposed. By iterating through different k values, the value corresponding to the largest evaluation factor was selected as the first-rank number of clusters. Secondly, the IASC algorithm adopts a density-sensitive distance to measure the similarity between the sample points. This rendered a high similarity to the data distributed in the same high-density area. Thirdly, to improve clustering accuracy, the IASC algorithm uses the cosine angle classification method instead of K-means to classify the eigenvectors. Six algorithms-K-means, fuzzy C-means, TSC, EIGENGAP, DBSCAN, and density peak-were compared with the proposed algorithm on six datasets. The results show that the IASC algorithm not only automatically determines the number of clusters but also obtains better clustering accuracy on both synthetic and UCI datasets.

Regional Rainfall Frequency Analysis by Multivariate Techniques (다변량 분석 기법을 활용한 강우 지역빈도해석)

  • Nam, Woo-Sung;Kim, Tae-Soon;Shin, Ju-Young;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.517-525
    • /
    • 2008
  • Regional rainfall quantile depends on the identification of hydrologically homogeneous regions. Various variables relevant to precipitation can be used to form regions. Since the type and number of variables may lead to improve the efficiency of partitioning, it is important to select those precipitation related variables, which represent most of the information from all candidate variables. Multivariate analysis techniques can be used for this purpose. Procrustes analysis which can decrease the dimension of variables based on their correlations, are applied in this study. 42 rainfall related variables are decreased into 21 ones by Procrustes analysis. Factor analysis is applied to those selected variables and then 5 factors are extracted. Fuzzy-c means technique classifies 68 stations into 6 regions. As a result, the GEV distributions are fitted to 6 regions while the lognormal and generalized logistic distributions are fitted to 5 regions. For the comparison purpose with previous results, rainfall quantiles based on generalized logistic distribution are estimated by at-site frequency analysis, index flood method, and regional shape estimation method.

Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems with Information Granulation (정보 Granules에 의한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계)

  • Park Keon-Jun;Ahn Tae-Chon;Oh Sung-kwun;Kim Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.81-86
    • /
    • 2005
  • In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informally speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality Granulation of information with the aid of Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method (LSM). An aggregate objective function with a weighting factor is also used in order to achieve a balance between performance of the fuzzy model. The proposed model is evaluated with using a numerical example and is contrasted with the performance of conventional fuzzy models in the literature.

A Context-Aware Information Service using FCM Clustering Algorithm and Fuzzy Decision Tree (FCM 클러스터링 알고리즘과 퍼지 결정트리를 이용한 상황인식 정보 서비스)

  • Yang, Seokhwan;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.810-819
    • /
    • 2013
  • FCM (Fuzzy C-Means) clustering algorithm, a typical split-based clustering algorithm, has been successfully applied to the various fields. Nonetheless, the FCM clustering algorithm has some problems, such as high sensitivity to noise and local data, the different clustering result from the intuitive grasp, and the setting of initial round and the number of clusters. To address these problems, in this paper, we determine fuzzy numbers which project the FCM clustering result on the axis with the specific attribute. And we propose a model that the fuzzy numbers apply to FDT (Fuzzy Decision Tree). This model improves the two problems of FCM clustering algorithm such as elevated sensitivity to data, and the difference of the clustering result from the intuitional decision. And also, this paper compares the effect of the proposed model and the result of FCM clustering algorithm through the experiment using real traffic and rainfall data. The experimental results indicate that the proposed model provides more reliable results by the sensitivity relief for data. And we can see that it has improved on the concordance of FCM clustering result with the intuitive expectation.

A Study on Fuzziness Parameter Selection in Fuzzy Vector Quantization for High Quality Speech Synthesis (고음질의 음성합성을 위한 퍼지벡터양자화의 퍼지니스 파라메타선정에 관한 연구)

  • 이진이
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.60-69
    • /
    • 1998
  • This paper proposes a speech synthesis method using Fuzzy VQ, and then study how to make choice of fuzziness value which optimizes (controls) the performance of FVQ in order to obtain the synthesized speech which is closer to the original speech. When FVQ is used to synthesize a speech, analysis stage generates membership function values which represents the degree to which an input speech pattern matches each speech patterns in codebook, and synthesis stage reproduces a synthesized speech, using membership function values which is obtained in analysis stage, fuzziness value, and fuzzy-c-means operation. By comparsion of the performance of the FVQ and VQ synthesizer with simmulation, we show that, although the FVQ codebook size is half of a VQ codebook size, the performance of FVQ is almost equal to that of VQ. This results imply that, when Fuzzy VQ is used to obtain the same performance with that of VQ in speech synthesis, we can reduce by half of memory size at a codebook storage. And then we have found that, for the optimized FVQ with maximum SQNR in synthesized speech, the fuzziness value should be small when the variance of analysis frame is relatively large, while fuzziness value should be large, when it is small. As a results of comparsion of the speeches synthesized by VQ and FVQ in their spectrogram of frequency domain, we have found that spectrum bands(formant frequency and pitch frequency) of FVQ synthesized speech are closer to the original speech than those using VQ.

  • PDF

퍼지 클러스터링 방법을 이용한 흉부 혈관의 검출에 관한 연구

  • 황준현;박광석;민병구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.1 no.2
    • /
    • pp.65-71
    • /
    • 1991
  • A new algorithm is proposed for the automatic detection of pulmonary blood vessels by simulating the human recognition process by the pyramid images. Large and wide vessels are detected from the most compressed level, followed by the detection of small and narrow ones from the less compressed images with FCM(fuzzy c means). As the proposed algorithm detects blood vessels orderly according to their size, there is no need to consdier the variation of parameters and the brance points which should be considered in other detection algorithms.

  • PDF

Analytical Study of Fuzzy Clustering Technique for Automatic Term Classification (용어 자동분류를 위한 퍼지 클러스터링 기법 분석)

  • 한승희
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2003.08a
    • /
    • pp.95-103
    • /
    • 2003
  • 목차 및 권말색인과 같은 인쇄형태의 정보내용에 대한 구조화된 접근방식에서 착안하여 전자 문서의 내용에 대한 새로운 형태의 접근방식을 개발할 수 있는데, 이를 위한 방안으로 용어 자동분류 기법이 있다. 본 연구에서는 용어의 의미모호성 문제를 해결하는 동시에 용어간 계층관계 표현이 가능한 자동분류 기법으로 퍼지 클러스터링 기법을 제안하고, 대표적인 퍼지 클러스터링 알고리즘인 퍼지 c-means 기법에 대해 분석하고자 한다.

  • PDF

A Clustering Algorithm using the Genetic Algorithm (진화알고리즘을 이용한 클러스터링 알고리즘)

  • 류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.313-315
    • /
    • 2000
  • 클러스터링에 있어서 K-means와 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최소 해에 수렴될 문제와 사전에 클러스터 개수를 결정해야 하는 문제점을 가지고 있다. 본 논문에서는 병렬 탐색을 통해 최적 해를 찾는 진화 알고리즘을 사용하여 지역적 최소 해에 수렴되는 문제점을 개선하였으며, 클러스터의 특성을 표준편차 벡터를 계산하여 중심으로부터 포함된 데이터가 얼마나 분포되어 있는지 알 수 있는 분산도와 임의의 데이터와 모든 중심들간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터간의 간격을 알 수 있는 분리도를 정의함으로써 자동으로 클러스터 개수를 결정할 수 있게 하였다. 실험데이터와 가우시안 분포에 의해 생성된 다차원 실험데이터를 사용하여 제안한 알고리즘이 이러한 문제점들을 해결하고 있음을 보인다.

  • PDF