Park, Byoung-Jun;Jang, Eun-Hye;Kim, Kyong-Ho;Kim, Sang-Hyeob
ETRI Journal
/
v.37
no.6
/
pp.1231-1241
/
2015
In this study, we investigate the relationship between emotions and the physiological responses, with emotion recognition, using the proposed fuzzy information granulation-based neural network (FIGNN) for boredom, pain, and surprise emotions. For an analysis of the physiological responses, three emotions are induced through emotional stimuli, and the physiological signals are obtained from the evoked emotions. To recognize the emotions, we design an FIGNN recognizer and deal with the feature selection through an analysis of the physiological signals. The proposed method is accomplished in premise, consequence, and aggregation design phases. The premise phase takes information granulation using fuzzy c-means clustering, the consequence phase adopts a polynomial function, and the aggregation phase resorts to a general fuzzy inference. Experiments show that a suitable methodology and a substantial reduction of the feature space can be accomplished, and that the proposed FIGNN has a high recognition accuracy for the three emotions using physiological signals.
This paper describes ECG signal labeling based on Fuzzy clustering, which is necessary at automated ECG diagnosis. The NPPA(Non parametric partitioning algorithm) compares the correlations of wave forms, which tends to recognize the same wave forms as different when the wave forms have a little morphological variation. We propose to apply Fuzzy clustering to ECG QRS Complex labeling, which prevents the errors to mistake by using If-then comparision. The process is divided into two parts. The first part is a parameters extraction process from ECG signal, which is composed of filtering, QRS detection by mapping to a phase space by time delay coordinates and generation of characteristic vectors. The second is fuzzy clustering by FCM(Fuzzy c-means), which is composed of a clustering, an assessment of cluster validity and labeling.
Kim, Jong-Sung;Lee, Chan-Su;Jang, Won;Bien, Zeungnam
Journal of the Korean Institute of Telematics and Electronics C
/
v.34C
no.2
/
pp.61-70
/
1997
Human-hand gestures have been used a means of communication among people for a long time, being interpreted as streams of tokens for a language. The signed language is a method of communication for hearing impaired person. Articulated gestures and postures of hands and fingers are commonly used for the signed language. This paper presents a system which recognizes the korean sign language (KSL) and translates the recognition results into a normal korean text and sound. A pair of data-gloves are used a sthe sensing device for detecting motions of hands and fingers. In this paper, we propose a dynamic gesture recognition mehtod by employing a fuzzy feature analysis method for efficient classification of hand motions, and applying a fuzzy min-max neural network to on-line pattern recognition.
NGUYEN, Dai Duong;Park, Gyei-Kark;Choi, Kyoung-Hoon
Journal of Navigation and Port Research
/
v.42
no.2
/
pp.117-126
/
2018
Container port is one of the most vital link of the transportation chain that plays an important role in trading with other countries. Having a proper understanding of port operations could change the role of the port from a transportation node to an efficient point in a transportation chain. Development of transportation chains, logistics and progress of these networks have enhanced the sustainable condition and level of transportation. Therefore, evaluating the competitiveness of ports is obligatory for port users to make a decision in investment or exploitation. This paper introduces the use of Fuzzy C-means and TOPSIS for competitiveness comparison among a sample of container terminals in Korea and China and determine how to improve Korean port competitiveness and particularly in Busan port.
Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
KIEE International Transactions on Electrophysics and Applications
/
v.5C
no.3
/
pp.138-142
/
2005
In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.
In this paper, a mew maximum power point tracker (MPPT) using Fuzzy Controller is proposed to improve energy conversion efficiency. Temperature compensation effect means that Photovoltaic voltage is change in condition irradiation, temperature and ect. Fuzzy algorithm is applied to control Boost MPPT converter by Temperature compensation effect. In this paper, temperature compensation range is $-40^{\circ}C{\sim}+100^{\circ}C$.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.5
/
pp.967-973
/
2017
Clustering is one of the most well-known unsupervised learning methods that clusters data into homogeneous groups. Clustering has been used in various applications and FCM is one of the representative methods. In Fuzzy C-Means(FCM), however, cluster centers tend leaning to high density areas because the Euclidean distance measure forces high density clusters to make more contribution to clustering result. Previously proposed was density-independent clustering method, where cluster centers were made not to be close each other and relived the center deviation problem. Density-independent clustering method has a limitation that it is difficult to specify the position of the cluster centers. In this paper, an enhanced density-independent clustering method with an additional term that makes cluster centers to be placed around dense region is proposed. The proposed method converges more to real centers compared to FCM and density-independent clustering, which can be verified with experimental results.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.2
/
pp.293-300
/
2018
We propose a moving object extraction and tracking method for improvement of animal identification and tracking technology. First, we propose a method of merging separated moving objects into a moving object by using FCM (Fuzzy C-Means) clustering algorithm to solve the problem of moving object loss caused by moving object extraction process. In addition, we propose a method of extracting data from a moving object and a method of counting moving objects to determine the number of clusters in order to satisfy the conditions for performing FCM clustering algorithm. Then, we propose a method to continuously track merged moving objects. In the proposed method, color histograms are extracted from feature information of each moving object, and the histograms are continuously accumulated so as not to react sensitively to noise or changes, and the average is obtained and stored. Thereafter, when a plurality of moving objects are overlapped and separated, the stored color histogram is compared with each other to correctly recognize each moving object. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.
Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of outstanding performance of control and forecasting accuracy. ANFIS has capability to refine its fuzzy rules interactively with human expert. In particular, when we use initial rule structure for machine learning which is generated from human expert, it is highly probable to reach global optimum solution as well as shorten time to convergence. We propose metrics to evaluate interpretability of generated rules as a means of acquiring domain knowledge and compare level of interpretability of ANFIS fuzzy rules to those of C5.0 classification rules. The proposed metrics also can be used to evaluate capability of rule generation for the various machine learning methods.
An integrated data analysis program for DNA chip containing normalization, FDM analysis, various kinds of clustering methods, PCA, and SVD was applied to analyze combined yeast cell cycle data. This paper includes both comparisons of some clustering algorithms such as K-means, SOM and furry c-means and their results. For further analysis, clustering results from the integrated analysis program was used for function assignments to each cluster and for motif analysis. These results show an integrated analysis view on DNA chip data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.