• Title/Summary/Keyword: fuzzy-PI control

Search Result 318, Processing Time 0.026 seconds

Design of the Wavelet-Based Fuzzy PI/PO Controller Using DNA Coding Method (웨이블릿 기반 DNA 코딩기법을 이용한 광디스크 드라이브용 퍼지 PI/PD 제어기 설계)

  • Yu, Jong-Hwa;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.370-372
    • /
    • 2004
  • This paper addresses the wavelet-based fuzzy PI/PD controller design using DNA coding method. A structure of fuzzy controller model is adopted as the wavelet transform of which the coefficients are identified. The proposed method overcomes some mathematical limits of conventional methods by using the fuzzy logic that is optimized by DNA coding method. The feasibility of the proposed fuzzy controller design scheme is verified by applying to the servo control of the optical disk drive.

  • PDF

A Design of Fuzzy-Cross Coupling Controller for AGV (AGV용 퍼지 상호 결합 제어기 설계)

  • Jeong, Kab-Kyun;Huh, Uk-Youl;Kim, Jin-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.522-524
    • /
    • 1998
  • In this paper, the cross-coupling controller with fuzzy logic for AGV is developed, Cross-coupling control directly minimizes orientation' error by coordinating the motion of the two drive wheels and uses PI controller for compensation. But, the transient response of PI controller results in deviation from trajectory. The Fuzzy Cross-coupling controller enhances transient performance without steady-state error. The performance of the above controller is demonstrated by simulation and is compared with that of PI controller.

  • PDF

Design of a Re-adhesion Controller using Fuzzy Logic with Estimated Adhesion Force Coefficient for Wheeled Robot (점착력 계수 추정을 이용한 이동 로봇의 퍼지 재점착 제어기 설계)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Jin-Hwhan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.620-622
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has a slip state. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weigh. Secondly, reposed fuzzy logic applied by the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takaki-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. In additionally, this algorithm controls recovered driving torque for the restrain the re-slip. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena through that compare fuzzy with PI control for the controller performance in the re-adhesion control strategy. These procedures are implemented using a Pioneer 2-DXE wheeled robot parameter.

  • PDF

Design of Fuzzy Controller of Induction Motor Drive with Considering Parameter Variation (파라미터 변동을 고려한 유도전동기 드라이브의 퍼지제어기 설계)

  • Chung, Dong-Hwa;Lee, Jung-Chul;Lee, Hong-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.111-119
    • /
    • 2002
  • This paper proposes a speed control system based on a fuzzy logic approach, integrated with a simple and effective adaptive algorithms. And this paper attempts to provide a thorough comparative insight into the behavior of induction motor drive with PI, direct and improved fuzzy speed controller. A indirect vector controlled induction motor is simulated under varying operating condition. The validity of the comparative results is confirmed by simulation results for induction motor drive system.

Effective and Reliable Speed Control of Permanent Magnet DC (PMDC) Motor under Variable Loads

  • Tuna, Murat;Fidan, Can Bulent;Kocabey, Sureyya;Gorgulu, Sertac
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2170-2178
    • /
    • 2015
  • This paper presents the effective and reliable speed control of PMDC motors under variable loads and reference speeds. As is known DC motors are more preferred in industrial practices. This is that, the PMDC motors don’t require brush and commutator care and to increase in torque per motor depending on developments in power electronics. In this study, proportional-integral controller (PI) and fuzzy logic controller (FL) have been designed for speed control of PMDC motor. In the design of these controllers, characteristics such as minimum overrun time, response time to the load, settling time and ideal rise time have been taken into consideration for better stability performance. In this design, the best system response was searched by examining the effect of different defuzzification methods onto the fuzzy logic system response. In conclusion, it has been seen that FL controller has a better performance for variable speed-load control of PMDC motor compared to PI controller.

A Novel Approach to Prevent Pressure Ulcer for a Medical Bed using Body Pressure Sensors

  • Young Dae Lee;Arum Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.146-157
    • /
    • 2024
  • Despite numerous air mattresses marketed to prevent Pressure Ulcers (PU), none have fully succeeded due to residual pressure surpassing critical levels. We introduces an innovative medical bed system aiming at complete PU prevention. This system employs a unique 4-bar link mechanism, moving keys up and down to manage body pressure. Each of the 17 keys integrates a sensor controller, reading pressure from 10 sensors. By regulating motor input, we maintain body pressure below critical levels. Keys are equipped with a servo drive and sensor controller, linked to the main controller via two CAN series. Using fuzzy or PI/IP controllers, we adjust keys to minimize total error, dispersing body pressure and ensuring comfort. In case of controller failure, keys alternate swiftly, preventing ulcer development. Through experimental tests under varied conditions, the fuzzy controller with tailored membership functions demonstrated swift performance. PI control showed rapid convergence, while IP control exhibited slower convergence and oscillations near zero error. Our specialized medical robot bed, incorporating 4-bar links and pressure sensors, underwent testing with three controllers-fuzzy, PI, and IP-showcasing their effectiveness in keeping body pressure below critical ulcer levels. Experimental results validate the proposed approach's efficacy, indicating potential for complete PU prevention.

An optimal scaling gain tuning method for designing a fuzzy logic controller (퍼지로직제어기를 설계하기 위한 최적 비율 이득 조정방법)

  • Shin, Hyunseok;Shim, Hansoo;Kwon, Cheol;Kang, Hyungjin;Park, Mignon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.192-194
    • /
    • 1996
  • This paper propose an optimal scaling gain tuning method of the fuzzy PI controller using Genetic Algorithm(GA). Scaling gains can reflect the control resolution and fuzziness of input/output variables. By the scaling gain method, the design of a fuzzy logic controller(FLC) can be simplified without affecting the system performance in comparison with multi-decision table method. In designing a fuzzy logic controller, the analytic approach method for the optimization is unavailable. Therefore GA is excellent optimization algorithms for scaling gain tuning. Using this optimal scaling gain tuning method, a good performance can be achieved both in transient and steady state.

  • PDF

A Study on Idle Speed Control Using Fuzzy Logic (퍼지 논리를 이용한 공회전 속도 제어에 관한 연구)

  • Ko, D.W.;Lee, Y.N.;Lee, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.23-29
    • /
    • 1994
  • The design procedure for fuzzy logic controller depends on the expert's knowledge or trial and error. Moreover, it is very difficult to guarantee the stability and robustness of the system due to the linguistic expression of fuzzy control. However, fuzzy logic control has succeeded in many control problems that the conventional control theory has difficulties to deal with. As a result, this control theory is applied to the engine control system which a mathematical model is difficult. In this study, the fuzzy logic is applied to obtain the gain of PI control at idle speed control system, and a simple engine model is developed in order to perform simulation. Experimental results show that the response to reach the target engine speed at idle speed control system is improved by adopting the gain obtained with fuzzy logic.

  • PDF

Fuzzy Control for Performance Improvement of DC Motor Drive System (직류전동기 드라이브 시스템의 성능개선을 위한 퍼지제어)

  • 정동화
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.55-65
    • /
    • 1999
  • Fuzzy logic fuzzy set theory is recently getting increasing emphasis in process control applications. This paper describes application of fuzzy logic in a speed control system that uses a phase controlled bridge converter and a separately excited dc motor. The fuzzy control is used to linearize the transfer characteristics of the converter in discontinuous conduction mod occurring at light load and high speed. The fuzzy control is then extended to the current and speed control loops replacing the conventional PI control method. The control algorithms have been developed in detail and verified by simulation of a DC motor(DM) drive system. The simulation result indicates the superiority of fuzzy control over the conventional control methods. Fuzzy logic seems to have a lot of promise in the applications of power electronics.

  • PDF

Design of a GA-Based Fuzzy PID Controller for Optical Disk Drive (유전알고리즘을 이용한 Optical Disk Drive의 퍼지 PID 제어기 설계)

  • 유종화;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.598-603
    • /
    • 2004
  • An optical head actuator of an optical disk drive consists of two servo mechanisms for the focusing and the tracking to acquire data from disk. As the rotational speed of the disk grows, the utilized lag-lead-lead compensator has known to be above its ability for precisely controlling the optical head actuator. To overcome the difficulty, this paper propose a new controller design method for optical head actuator based fuzzy proportional-integral-derivative (PID) control and the genetic algorithm(GA). It employs a two-stage control structure with a fuzzy PI and a fuzzy PD control and is optimized by the GA to yield the suboptimal fuzzy PID control performance. It is shown the feasibility of the proposed method through a numerical tracking actuator simulation.