• Title/Summary/Keyword: fuzzy technique

Search Result 1,041, Processing Time 0.029 seconds

Multipurpose Dam Operation Models for Flood Control Using Fuzzy Control Technique ( I ) - Development of Single Dam Operation Models - (퍼지제어모형을 이용한 다목적 댐의 홍수조절모형( I ) - 단일댐의 운영모형 개발 -)

  • Shim, Jae-Hyun;Kim, Ji-Tae;Heo, Jun-Haeng;Kim, Jin-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.33-40
    • /
    • 2004
  • The objective of this study is to develop single dam operation models for flood control using Fuzzy control technique, which can improve flood controllability. We set control rules by water level and inflow, and developed three models Fuzzy I, II, III according to rule to decide outflow. Fuzzy I model consists of six rules considering only flood control and Fuzzy II model considers the effect of water use by increasing water level at the end of flood control period as well as flood control during the same period. Finally, Fuzzy m is an adaptive model designed to perform multipurpose dam operation for both flood control and water use simultaneously based on a control rules.

A New Approach to the Design of An Adaptive Fuzzy Sliding Mode Controller

  • Lakhekar, Girish Vithalrao
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.50-60
    • /
    • 2013
  • This paper presents a novel approach to the design of an adaptive fuzzy sliding mode controller for depth control of an autonomous underwater vehicle (AUV). So far, AUV's dynamics are highly nonlinear and the hydrodynamic coefficients of the vehicles are difficult to estimate, because of the variations of these coefficients with different operating conditions. These kinds of difficulties cause modeling inaccuracies of AUV's dynamics. Hence, we propose an adaptive fuzzy sliding mode control with novel fuzzy adaptation technique for regulating vertical positioning in presence of parametric uncertainty and disturbances. In this approach, two fuzzy approximator are employed in such a way that slope of the linear sliding surface is updated by first fuzzy approximator, to shape tracking error dynamics in the sliding regime, while second fuzzy approximator change the supports of the output fuzzy membership function in the defuzzification inference module of fuzzy sliding mode control (FSMC) algorithm. Simulation results shows that, the reaching time and tracking error in the approaching phase can be significantly reduced with chattering problem can also be eliminated. The effectiveness of proposed control strategy and its advantages are indicated in comparison with conventional sliding mode control FSMC technique.

Design Flood Estimation for Pyeongchang River Basin Using Fuzzy Regression Method (Fuzzy 회귀분석기법을 이용한 평창강 유역의 설계홍수량 산정)

  • Yi, Jaeeung;Kim, Seungjoo;Lee, Taegeun;Ji, Jungwon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.1023-1034
    • /
    • 2012
  • Linear regression technique has been used widely in water resources field as well as various fields such as economics and statistics, and so on. Using fuzzy regression technique, it is possible to quantify uncertainty and reflect them to the regression model. In this study, fuzzy regression model is developed to compute design floods in any place in Pyeongchang River basin. In ungaged basins, it is usually difficult to obtain data required for flood discharge analysis. In this study, basin characteristics elements are analyzed spatially using GIS and the technique of estimating design flood in ungaged mountainous basin is studied based on the result. Fuzzy regression technique is applied to Pyeongchang River basin which has mountainous basin characteristics and well collected rainfall and runoff data through IHP test basin project. Fuzzy design flood estimation equations are developed using the basin characteristics elements for Pyeongchang River basin. The suitability of developed fuzzy equations are examined by comparing the results with design floods computed in 9 locations along the river. Using regional regression method and fuzzy regression analysis, the uncertainties of the design floods occurred from the data monitoring can be quantified.

A study on the Development of the Portable Device for Safety Diagnosis and Dynamic Characteristics Analysis of Elevator using Fuzzy Algorithm (Fuzzy 알고리즘을 이용한 엘리베이터 안전진단 및 동특성 분석 포터블 장비 개발)

  • 김태형;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.199-202
    • /
    • 2001
  • An elevator system, which is essential equipment for vertical movement of an object, as a property of building, has been driven by various expenditures and purposes. Since developing electrical control technology, control system are highly developed. The elevator system has expanded widely, but a data accuracy acquisition technique and safety predict technique for securing system safety is still at a basic level. So, objective verification for elevator confidence condition requires an absolute accuracy measurement technique. Therefore, this study is executed in order to acquire a method of depending on sense of a manager with simple numeric measurement data, and to construct a logical, analytical foresight system for more efficient elevator management system. As an artificial intelligence for diagnosis, the fuzzy inference algorithm is used for foreseeing the system in this thesis, because the fuzzy algorithm is the most useful method for resolving subjective ideas and a vague judgment of humans. The fuzzy inference algorithm is developed for each sensor signal(i.e. vibration, velocity, current).

  • PDF

Fuzzy hybrid control of a wind-excited tall building

  • Kang, Joo-Won;Kim, Hyun-Su
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.381-399
    • /
    • 2010
  • A fuzzy hybrid control technique using a semi-active tuned mass damper (STMD) has been proposed in this study for mitigation of wind induced motion of a tall building. For numerical simulation, a third generation benchmark is employed for a wind-excited 76-story building. A magnetorheological (MR) damper is used to compose an STMD. The proposed control technique employs a hierarchical structure consisting of two lower-level semi-active controllers (sub-controllers) and a higher-level fuzzy hybrid controller. Skyhook and groundhook control algorithms are used as sub-controllers. When a wind load is applied to the benchmark building, each sub-controller provides different control commands for the STMD. These control commands are appropriately combined by the fuzzy hybrid controller during realtime control. Results from numerical simulations demonstrate that the proposed fuzzy hybrid control technique can effectively reduce the STMD motion as well as building responses compared to the conventional hybrid controller. In addition, it is shown that the control performance of the STMD is superior to that of the sample TMD and comparable to an active TMD, but with a significant reduction in power consumption.

Design of a Robust Control System Using the Fuzzy-LQ Control Technique (퍼지-LQ 제어 기법을 이용한 강인한 제어시스템의 설계)

  • 최재준;소명옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.623-630
    • /
    • 2001
  • The conventional control techniques based a mathematical model are not well suited for dealing with ill-defined and uncertain system like a linear quadratic control. Recently, fuzzy control has been successfully applied to a wide variety of practical problems such as robot, water purification, automatic train operation system etc. In this paper, a design technique of robust Fuzzy-LQ controller for each subsystem is designed. Secondly , all the subsystem controllers are combined by fuzzy weighted averaging method. Finally the effectiveness of the proposed controller is verified through a series of computer simulations for an inverted pole system.

  • PDF

Online Fuzzy Modelling of Nonlinear Systems Using a Genetic Algorithm (유전알고리즘을 이용한 비선형 시스템의 온라인 퍼지 모델링)

  • 이현식;오정환;신위재;김종화;진강규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.80-87
    • /
    • 1998
  • This paper presents and online scheme for fuzzy modelling of nonlinear systems, based on the model adjustment technique and the genetic algorithm technique. The fuzzy model is characterized by fuzzy "if-then" rules which represent locally linear input-output relations whose consequence parts are defined as subsystems of a nonlinear sysem. The discrete-time model for each subsystem is obtained to deal with initalization and unmeasurable signal problems in online estimation and the final output of the fuzzy model is computed from the outputs of the discrete-time models. Then, the parameters of both the premise and consequence parts of the fuzzy model are adjusted by a genetic algorithm. A set of simulation works is carried out to demonstrate the effectiveness of the proposed method.ed method.

  • PDF

Fault Types-Classification and Section Discrimination Algorithm using Neuro-Fuzzy in Combined Transmission Lines (뉴로-퍼지를 이용한 혼합송전선로에서의 고장종류 및 고장구간 판별 알고리즘)

  • Kim, Kyoung-Ho;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.534-536
    • /
    • 2003
  • It is important to classily fault types and discriminate fault section by any detecting technique for combined transmission lines. This paper proposes the technique to classify the fault types and fault section using neuro-fuzzy systems. Neuro-fuzzy systems are composed of two parts to perform different works. First, neuro-fuzzy system for fault type classification is performed with approximation coefficient of currents obtained by wavelet transform. Another neuro-fuzzy system discriminates the fault section between overhead and underground with detail coefficients of voltage and current. In this paper, neuro-fuzzy system shows the excellent results for classification of fault types and discrimination of fault section.

  • PDF

An Intelligent Control of TRack Vehicle Using Fuzzy-Neural Network Control Method (퍼지-신경회로망 제어기법에 의한 궤도차량의 지능제어)

  • 신행봉;김용태;조길수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.210-215
    • /
    • 1999
  • In this paper, a new approach to the dynamic control technique for track vehicle system using fuzzy-neural network control technique is proposed. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

Hybrid State Space Self-Tuning Fuzzy Controller with Dual-Rate Sampling

  • Kwon, Oh-Kook;Joo, Young-Hoon;Park, Jin-Bae;L. S. Shieh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.244-249
    • /
    • 1998
  • In this paper, the hybrid state space self-tuning control technique Is studied within the framework of fuzzy systems and dual-rate sampling control theory. We show that fuzzy modeling techniques can be used to formulate chaotic dynamical systems. Then, we develop the hybrid state space self-tuning fuzzy control techniques with dual-rate sampling for digital control of chaotic systems. An equivalent fast-rate discrete-time state-space model of the continuous-time system is constructed by using fuzzy inference systems. To obtain the continuous-time optimal state feedback gains, the constructed discrete-time fuzzy system is converted into a continuous-time system. The developed optimal continuous-time control law is then convened into an equivalent slow-rate digital control law using the proposed digital redesign method. The proposed technique enables us to systematically and effective]y carry out framework for modeling and control of chaotic systems. The proposed method has been successfully applied for controlling the chaotic trajectories of Chua's circuit.

  • PDF