• Title/Summary/Keyword: fuzzy subalgebra (ideal)

Search Result 14, Processing Time 0.021 seconds

FUZZY ε-SUBALGEBRAS (IDEALS) IN BCI-ALGEBRAS

  • Jun, Young Bae;Lee, Kyoung Ja
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.395-404
    • /
    • 2020
  • Based on a sub-BCK-algebra K of a BCI-algebra X, the notions of fuzzy (K, ε)-subalgebras, fuzzy (K, ε)-ideals and fuzzy commutative (K, ε)-ideals are introduced, and their relations/properties are investigated. Conditions for a fuzzy subalgebra/ideal to be a fuzzy (K, ε)-subalgebra/ideal are provided.

FALLING SUBALGEBRAS AND IDEALS IN BH-ALGEBRAS

  • Kim, Eun-Mi;Ahn, Sun-Shin
    • The Pure and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.251-262
    • /
    • 2012
  • Based on the theory of a falling shadow which was first formulated by Wang([14]), a theoretical approach of the ideal structure in BH-algebras is established. The notions of a falling subalgebra, a falling ideal, a falling strong ideal, a falling $n$-fold strong ideal and a falling translation ideal of a BH-algebra are introduced. Some fundamental properties are investigated. Relations among a falling subalgebra, a falling ideal and a falling strong ideal, a falling $n$-fold strong ideal are stated. A relation between a fuzzy subalgebra/ideal and a falling subalgebra/ideal is provided.

BIPOLAR FUZZY a-IDEALS OF BCI-ALGEBRAS

  • Lee, Kyoung-Ja;Jun, Young-Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.531-542
    • /
    • 2011
  • The notion of bipolar fuzzy a-ideals of BCI-algebras is introduced, and their properties are investigated. Relations between bipolar fuzzy subalgebras, bipolar fuzzy ideals and bipolar fuzzy a-ideals are discussed. Conditions for a bipolar fuzzy ideal to be a bipolar fuzzy a-ideal are provided. Characterizations of bipolar fuzzy a-ideals are given. Using a finite collection of a-ideals, a bipolar fuzzy a-ideal is established.

Subalgebras and Ideals of BCK/BCI-Algebras in the Frame-work of the Hesitant Intersection

  • Jun, Young Bae
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.371-386
    • /
    • 2016
  • Using the hesitant intersection (${\Cap}$), the notions of ${\Cap}$-hesitant fuzzy subalgebras, ${\Cap}$-hesitant fuzzy ideals and ${\Cap}$-hesitant fuzzy p-ideals are introduced,and their relations and related properties are investigated. Conditions for a ${\Cap}$-hesitant fuzzy ideal to be a ${\Cap}$-hesitant fuzzy p-ideal are provided. The extension property for ${\Cap}$-hesitant fuzzy p-ideals is established.

CONSTRUCTION OF QUOTIENT BCI(BCK)-ALGEBRA VIA A FUZZY IDEAL

  • Liu, Yong-Lin;Jie Meng
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.51-62
    • /
    • 2002
  • The present paper gives a new construction of a quotient BCI(BCK)-algebra X/${\mu}$ by a fuzzy ideal ${\mu}$ in X and establishes the Fuzzy Homomorphism Fundamental Theorem. We show that if ${\mu}$ is a fuzzy ideal (closed fuzzy ideal) of X, then X/${\mu}$ is a commutative (resp. positive implicative, implicative) BCK(BCI)-algebra if and only if It is a fuzzy commutative (resp. positive implicative, implicative) ideal of X Moreover we prove that a fuzzy ideal of a BCI-algebra is closed if and only if it is a fuzzy subalgebra of X We show that if the period of every element in a BCI-algebra X is finite, then any fuzzy ideal of X is closed. Especiatly, in a well (resp. finite, associative, quasi-associative, simple) BCI-algebra, any fuzzy ideal must be closed.

Hesitant fuzzy soft sets over UP-algebras

  • Mosrijai, Phakawat;Iampan, Aiyared
    • Annals of Fuzzy Mathematics and Informatics
    • /
    • v.16 no.3
    • /
    • pp.317-331
    • /
    • 2018
  • This paper aims to extend the notion of hesitant fuzzy sets on UP-algebras to hesitant fuzzy soft sets over UP-algebras by merging the notions of hesitant fuzzy sets and soft sets. Further, we discuss the notions of hesitant fuzzy soft strongly UP-ideals, hesitant fuzzy soft UP-ideals, hesitant fuzzy soft UP-filters, and hesitant fuzzy soft UP-subalgebras of UP-algebras, and provide some properties.

QUASI-ASSOCIATIVE IDEALS IN BCI-ALGEBRAS BASED ON BIPOLAR-VALUED FUZZY SETS

  • Jun, Young-Bae;Kim, Seon-Yu;Roh, Eun-Hwan
    • Honam Mathematical Journal
    • /
    • v.31 no.1
    • /
    • pp.125-136
    • /
    • 2009
  • After the introduction of fuzzy sets by Zadeh, there have been a number of generaizations of this fundamental concept. The notion of bipolar-valued fuzzy sets introduced by Lee is one among them. In this paper, we apply the concept of a bipolar-valued fuzzy set to quasi-associative ideals in BCI-algebras. The notion of a bipolar fuzzy quasi-associative ideal of a BCI-algebra is introduced, and some related properties are investigated. Characterizations of a bipolar fuzzy quasi-associative ideal are given. Extension property for a bipolar fuzzy QA-ideal is established.

INTUITIONISTIC Q-FUZZY PMS-IDEALS OF A PMS-ALGEBRA

  • Derseh, Beza Lamesgin;Alaba, Berhanu Assaye;Wondifraw, Yohannes Gedamu
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.443-458
    • /
    • 2022
  • In this paper, we apply the concept of intuitionistic Q-fuzzy set to PMS-algebras. We study the concept of intuitionistic Q-fuzzy PMS-ideals of PMS-algebras and investigate some related properties of intuitionistic Q-fuzzy PMS-ideals of PMS-algebras. We provide the relationship between an intuitionistic Q-fuzzy PMS-subalgebra and an intuitionistic Q-fuzzy PMS-ideal of a PMS-algebra. We establish a condition for an intuitionistic Q-fuzzy set in a PMS-algebra to be an intuitionistic Q-fuzzy PMS-ideal of a PMS-algebra. Characterizations of intuitionistic Q-fuzzy PMS-ideals of PMS-algebras in terms of their level sets are given.