• Title/Summary/Keyword: fuzzy rule-based system

Search Result 354, Processing Time 0.029 seconds

An Approach to Linguistic Instruction Based Learning and Its Application to Helicopter Flight Control

  • M.Sugeno;Park, G.K.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1082-1085
    • /
    • 1993
  • In this paper, we notice the fact that a human learning process is characterized by a process under a natural language environment, and discuss an approach of learning based on indirect linguistic instructions. An instruction is interpreted through some meaning elements and each trend. Fuzzy evaluation rule are constructed for the searched meaning elements of the given instruction, and the performance of a system to be learned is improved by the evaluation rules. In this paper, we propose a framework of learning based on indirect linguistic instruction based learning using fuzzy theory: FULLINS(FUzzy-Learning based on Linguistic IN-Struction). The validity of FULLINS is shown by applying it to helicopter flight control.

  • PDF

Risk Analysis for the Rotorcraft Landing System Using Comparative Models Based on Fuzzy (퍼지 기반 다양한 모델을 이용한 회전익 항공기 착륙장치의 위험 우선순위 평가)

  • Na, Seong Hyeon;Lee, Gwang Eun;Koo, Jeong Mo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.49-57
    • /
    • 2021
  • In the case of military supplies, any potential failure and causes of failures must be considered. This study is aimed at examining the failure modes of a rotorcraft landing system to identify the priority items. Failure mode and effects analysis (FMEA) is applied to the rotorcraft landing system. In general, the FMEA is used to evaluate the reliability in engineering fields. Three elements, specifically, the severity, occurrence, and detectability are used to evaluate the failure modes. The risk priority number (RPN) can be obtained by multiplying the scores or the risk levels pertaining to severity, occurrence, and detectability. In this study, different weights of the three elements are considered for the RPN assessment to implement the FMEA. Furthermore, the FMEA is implemented using a fuzzy rule base, similarity aggregation model (SAM), and grey theory model (GTM) to perform a comparative analysis. The same input data are used for all models to enable a fair comparison. The FMEA is applied to military supplies by considering methodological issues. In general, the fuzzy theory is based on a hypothesis regarding the likelihood of the conversion of the crisp value to the fuzzy input. Fuzzy FMEA is the basic method to obtain the fuzzy RPN. The three elements of the FMEA are used as five linguistic terms. The membership functions as triangular fuzzy sets are the simplest models defined by the three elements. In addition, a fuzzy set is described using a membership function mapping the elements to the intervals 0 and 1. The fuzzy rule base is designed to identify the failure modes according to the expert knowledge. The IF-THEN criterion of the fuzzy rule base is formulated to convert a fuzzy input into a fuzzy output. The total number of rules is 125 in the fuzzy rule base. The SAM expresses the judgment corresponding to the individual experiences of the experts performing FMEA as weights. Implementing the SAM is of significance when operating fuzzy sets regarding the expert opinion and can confirm the concurrence of expert opinion. The GTM can perform defuzzification to obtain a crisp value from a fuzzy membership function and determine the priorities by considering the degree of relation and the form of a matrix and weights for the severity, occurrence, and detectability. The proposed models prioritize the failure modes of the rotorcraft landing system. The conventional FMEA and fuzzy rule base can set the same priorities. SAM and GTM can set different priorities with objectivity through weight setting.

A Fuzzy Controller for Obstacle Avoidance Robots and Lower Complexity Lookup-Table Sharing Method Applicable to Real-time Control Systems (이동 로봇의 장애물회피를 위한 퍼지제어기와 실시간 제어시스템 적용을 위한 저(低)복잡도 검색테이블 공유기법)

  • Kim, Jin-Wook;Kim, Yoon-Gu;An, Jin-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.60-69
    • /
    • 2010
  • Lookup-Table (LUT) based fuzzy controller for obstacle avoidance enhances operations faster in multiple obstacles environment. An LUT based fuzzy controller with Positive/Negative (P/N) fuzzy rule base consisting of 18 rules was introduced in our paper$^1$ and this paper shows a 50-rule P/N fuzzy controller for enhancing performance in obstacle avoidance. As a rule, the more rules are necessary, the more buffers are required. This paper suggests LUT sharing method in order to reduce LUT buffer size without significant degradation of performance. The LUT sharing method makes buffer size independent of the whole fuzzy system's complexity. Simulation using MSRDS(MicroSoft Robotics Developer Studio) evaluates the proposed method, and in order to investigate its performance, experiments are carried out to Pioneer P3-DX in the LabVIEW environment. The simulation and experiments show little difference between the fully valued LUT-based method and the LUT sharing method in operation times. On the other hand, LUT sharing method reduced its buffer size by about 95% of full valued LUT-based design.

A Study on the Fault Diagnosis System for Combustion System of Diesel Engines Using Knowledge Based Fuzzy Inference (지식기반 퍼지 추론을 이용한 디젤기관 연소계통의 고장진단 시스템에 관한 연구)

  • 유영호;천행춘
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.42-48
    • /
    • 2003
  • In general many engineers can diagnose the fault condition using the abnormal ones among data monitored from a diesel engine, but they don't need the system modelling or identification for the work. They check the abnormal data and the relationship and then catch the fault condition of the engine. This paper proposes the construction of a fault diagnosis engine through malfunction data gained from the data fault detection system of neural networks for diesel generator engine, and the rule inference method to induce the rule for fuzzy inference from the malfunction data of diesel engine like a site engineer with a fuzzy system. The proposed fault diagnosis system is constructed in the sense of the Malfunction Diagnosis Engine(MDE) and Hierarchy of Malfunction Hypotheses(HMH). The system is concerned with the rule reduction method of knowledge base for related data among the various interactive data.

A Fuzzy Expert System for Auto-tuning PID Controllers (PID제어기의 자동조정을 위한 퍼지 전문가시스템)

  • Lee, Kee-Sang;Kim, Hyun-Chul;Park, Tae-Geon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.436-438
    • /
    • 1993
  • A rule based fuzzy expert system in self-tune PID controllers is presented in this paper. The rule base. the core of the expert system, is extracted from the Wills' tuning map and the author's knowledge about the implicit relations between PID gains and controlled output response. The overall control system consists of the relay feedback scheme and the expert system, where the one is responsible for initial tuning and the other for subsequent tuning. The PID control system with the proposed fuzzy expert system, shows better convergence rate and control performances than those of a Litt in spite of the fact that the two rule bases are extracted from the same maps provided by Wills.

  • PDF

A Design of FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) using Naive Bayesian and Data Mining (나이브 베이지안과 데이터 마이닝을 이용한 FHIDS(Fuzzy Logic based Hybrid Intrusion Detection System) 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • This paper proposes an FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) design that detects anomaly and misuse attacks by using a Naive Bayesian algorithm, Data Mining, and Fuzzy Logic. The NB-AAD(Naive Bayesian based Anomaly Attack Detection) technique using a Naive Bayesian algorithm within the FHIDS detects anomaly attacks. The DM-MAD(Data Mining based Misuse Attack Detection) technique using Data Mining within it analyzes the correlation rules among packets and detects new attacks or transformed attacks by generating the new rule-based patterns or by extracting the transformed rule-based patterns. The FLD(Fuzzy Logic based Decision) technique within it judges the attacks by using the result of the NB-AAD and DM-MAD. Therefore, the FHIDS is the hybrid attack detection system that improves a transformed attack detection ratio, and reduces False Positive ratio by making it possible to detect anomaly and misuse attacks.

Evaluation of Interpretability for Generated Rules from ANFIS (ANFIS에서 생성된 규칙의 해석용이성 평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.123-140
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of outstanding performance of control and forecasting accuracy. ANFIS has capability to refine its fuzzy rules interactively with human expert. In particular, when we use initial rule structure for machine learning which is generated from human expert, it is highly probable to reach global optimum solution as well as shorten time to convergence. We propose metrics to evaluate interpretability of generated rules as a means of acquiring domain knowledge and compare level of interpretability of ANFIS fuzzy rules to those of C5.0 classification rules. The proposed metrics also can be used to evaluate capability of rule generation for the various machine learning methods.

  • PDF

Fuzzy Rule Reduction Algorithms and the Reconstruction of Fuzzy System using Decomposition of Nonlinear Functions (비선형 함수의 분해를 이용한 퍼지시스템의 재구성과 퍼지규칙수 줄임 알고리즘)

  • 유병국
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Fuzzy system is capable of uniformly approximating any nonlinear function over compact input space. The applications of fuzzy system, however, have been primarily limited by the need for large number of fuzzy rules, in particular, for the high-order nonlinear system. In this paper, we propose the reconstruction methods of fuzzy systems, parallel type and cascade, based on the decomposition of some classes of high-order nonlinear functions. Using the both types appropriately, we can reduce the number of fuzzy rules geometrically. It can be applied to the fuzzy system that has an online adaptive structure. Two examples of adaptive fuzzy sliding mode control are shown in the computer simulations to verify the validity of the proposed algorithm.

  • PDF

Design and Analysis of Fuzzy PID Control for Nonlinear System (비선형 시스템을 위한 퍼지 PID 제어기의 설계 및 해석)

  • Kim, Sung-Ho;Lee, Cheul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.650-652
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance. FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and increase efficiency, a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy Pi and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and them. The resultant rule base is Macvicar-Whelan type. The frequency response information is used in tuning of membership functions. Also a tuning strategy for the scaling factors is Proposed based on the relationship between PID gain and them. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

Fuzzy Belief Network : Approximate Reasoning System Using The Possiblity (Fuzzy Belief Network : 가능성을 이용한 근사추론 시스템)

  • 조상엽;김기태
    • Korean Journal of Cognitive Science
    • /
    • v.4 no.1
    • /
    • pp.261-294
    • /
    • 1993
  • Most of expert systems,as a rule-based system,should be convenient to modify a rule and to insert a new rule, which is called modularity of rules. When we think correlated evidences in expert systems. conventional systems are too local to recognize the common origin of the information, and they would update the belief of the hypothesis as if it were supposed by independence soureces. In this paper to overcome such drawbacks we propose Fuzzy Belief Network which is based on the Beysian Network which provide the modulartiy between rules. To build Fuzzy Belief Network, we define nodes and links and propose algorithms for data fusion in individual node and for propagation belief value obtained as a result of data fusion.