• 제목/요약/키워드: fuzzy rule-based system

검색결과 354건 처리시간 0.027초

AGV시스템에서 적응 규칙을 갖는 퍼지 급송알고리듬에 관한 연구 (A Fuzzy Dispatching Algorithm with Adaptive Control Rule for Automated Guided Vehicle System in Job Shop Environment)

  • 김대범
    • 한국시뮬레이션학회논문지
    • /
    • 제9권1호
    • /
    • pp.21-38
    • /
    • 2000
  • A fuzzy dispatching algorithm with adaptable control scheme is proposed for more flexible and adaptable operation of AGV system. The basic idea of the algorithm is prioritization of all move requests based on the fuzzy urgency. The fuzzy urgency is measured by the fuzzy multi-criteria decision-making method, utilizing the relevant information such as incoming and outgoing buffer status, elapsed time of move request, and AGV traveling distance. At every dispatching decision point, the algorithm prioritizes all move requests based on the fuzzy urgency. The performance of the proposed algorithm is compared with several dispatching algorithms in terms of system throughput in a hypothetical job shop environment. Simulation experiments are carried out varying the level of criticality ratio of AGVs , the numbers of AGVs, and the buffer capacities. The rule presented in this study appears to be more effective for dispatching AGVs than the other rules.

  • PDF

Fuzzy Classification Rule Learning by Decision Tree Induction

  • Lee, Keon-Myung;Kim, Hak-Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.44-51
    • /
    • 2003
  • Knowledge acquisition is a bottleneck in knowledge-based system implementation. Decision tree induction is a useful machine learning approach for extracting classification knowledge from a set of training examples. Many real-world data contain fuzziness due to observation error, uncertainty, subjective judgement, and so on. To cope with this problem of real-world data, there have been some works on fuzzy classification rule learning. This paper makes a survey for the kinds of fuzzy classification rules. In addition, it presents a fuzzy classification rule learning method based on decision tree induction, and shows some experiment results for the method.

Fuzzy Inference in RDB using Fuzzy Classification and Fuzzy Inference Rules

  • 김진성
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.153-156
    • /
    • 2005
  • In this paper, a framework for implementing UFIS (Unified Fuzzy rule-based knowledge Inference System) is presented. First, fuzzy clustering and fuzzy rules deal with the presence of the knowledge in DB (DataBase) and its value is presented with a value between 0 and 1. Second, RDB (Relational DB) and SQL queries provide more flexible functionality fur knowledge management than the conventional non-fuzzy knowledge management systems. Therefore, the obtained fuzzy rules offer the user additional information to be added to the query with the purpose of guiding the search and improving the retrieval in knowledge base and/ or rule base. The framework can be used as DM (Data Mining) and ES (Expert Systems) development and easily integrated with conventional KMS (Knowledge Management Systems) and ES.

  • PDF

폭발적인크기의 룰-기반의 응용을 위한 멀티 레이어 퍼어지 관계 설계 (Fuzzy Multi-Layer Relational Design for the explosive rule-based applications)

  • 김영택
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.343-346
    • /
    • 2012
  • There are many realistic system necessities on the huge size of rule matrices with any Fuzzy Logical Inferences. This paper indicates the experimental design policy on the PCS design for the Platoon and AOS for the social application with some identical resemblances in between them so that we could use a design for two different usages feasibly.

합 기반의 전건부를 가지는 뉴로-퍼지 시스템 설계 (Design of a Neuro-Fuzzy System Using Union-Based Rule Antecedent)

  • 한창욱;이돈규
    • 정보처리학회 논문지
    • /
    • 제13권2호
    • /
    • pp.13-17
    • /
    • 2024
  • 본 논문에서는 규칙의 수를 줄여 간결한 지식 기반을 보장할 수 있는 합 기반의 전건부를 가지는 뉴로-퍼지 제어기를 제안하였다. 제안된 뉴로-퍼지 제어기는 모든 입력 변수의 AND 조합을 전건부로 하는 구조의 퍼지 규칙보다 더 큰 입력 영역을 커버하기 위해 전건부에 입력 퍼지 집합의 합집합 연산을 허용하였다. 이러한 뉴로-퍼지 제어기를 구성하기 위해 본 논문에서는 OR 및 AND 퍼지 뉴런으로 구성된 multiple-term unified logic processor (MULP)를 고려하였다. 이러한 OR 및 AND 퍼지 뉴런은 조정 가능한 연결 강도 집합을 가지므로 학습을 통하여 최적의 연결 강도 집합을 찾을 수 있다. 초기 최적화 단계에서 유전 알고리즘은 제안된 뉴로 퍼지 제어기의 최적화된 이진 구조를 구성하고, 이후 확률에 기반한 강화 학습은 성능 지수를 더욱 향상시켜서 유전 알고리즘에 의해 최적화된 제어기의 이진 연결을 개선하였다. 역진자 시스템을 제어하기 위한 모의실험 및 실험을 통해 제안된 방법의 유효성을 검증하였다.

FUZZY IDENTIFICATION BY MEANS OF AUTO-TUNING ALGORITHM AND WEIGHTING FACTOR

  • Park, Chun-Seong;Oh, Sung-Kwun;Ahn, Tae-Chon;Pedrycz, Witold
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.701-706
    • /
    • 1998
  • A design method of rule -based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of " IF..., THEN,," statements. using the theories of optimization and linguistic fuzzy implication rules. The improved complex method, which is a powerful auto-tuning algorithm, is used for tuning of parameters of the premise membership functions in consideration of the overall structure of fuzzy rules. The optimized objective function, including the weighting factors, is auto-tuned for better performance of fuzzy model using training data and testing data. According to the adjustment of each weighting factor of training and testing data, we can construct the optimal fuzzy model from the objective function. The least square method is utilized for the identification of optimum consequence parameters. Gas furance and a sewage treatment proce s are used to evaluate the performance of the proposed rule-based fuzzy modeling.

  • PDF

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.

연속된 데이터의 퍼지학습에 의한 비정상 시계열 예측 (Predicting Nonstationary Time Series with Fuzzy Learning Based on Consecutive Data)

  • 김인택
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권5호
    • /
    • pp.233-240
    • /
    • 2001
  • This paper presents a time series prediction method using a fuzzy rule-based system. Extracting fuzzy rules by performing a simple one-pass operation on the training data is quite attractive because it is easy to understand, verify, and extend. The simplest method is probably to relate an estimate, x(n+k), with past data such as x(n), x(n-1), ..x(n-m), where k and m are prefixed positive integers. The relation is represented by fuzzy if-then rules, where the past data stand for premise part and the predicted value for consequence part. However, a serious problem of the method is that it cannot handle nonstationary data whose long-term mean is varying. To cope with this, a new training method is proposed, which utilizes the difference of consecutive data in a time series. In this paper, typical previous works relating time series prediction are briefly surveyed and a new method is proposed to overcome the difficulty of prediction nonstationary data. Finally, computer simulations are illustrated to show the improved results for various time series.

  • PDF

비선형 시스템 제어를 위한 퍼지 PID 제어기의 설계 및 해석 (Design and Analysis of Fuzzy PID Controller for Control of Nonlinear System)

  • 이철희;김성호
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.155-162
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance, FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and to increase efficiency. a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy PI and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and the resultant rule base is Macvicar-Whelan type. And the membership function is a Gaussian function. The frequency response information is used in tuning of the membership functions. Also a tuning strategy for the scaling factors is proposed based on the relationship between PID gain and the scaling factors. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

Design of fuzzy PID controller for based on PI and PD parallel structure

  • Lee, Chul-Heui;Kim, Kwang-Ho;Seo, Seon-Hak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.71-74
    • /
    • 1995
  • In this paper, a new PID fuzzy controller(FC) based on parallel operation of PI and PD fuzzy control is presented. First, two fuzzy rule bases are constructed by separating the linguistic control rule for PID FC into two parts : one is e-.DELTA.e part, and the other is .DELTAL.$^{2}$e-.DELTA.e part. And then two FCs employing these rule bases indivisually are synthesized and run in parallel. The incremental control input is determined by taking weighted mean of the outputs of two FCs. The proposed PID FC improves the transient response of the system and gives better performance than the conventional PI FC.

  • PDF