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Predicting Nonstationary Time Series with Fuzzy Learning
Based on Consecutive Data

& C B
(Intack Kim)

Abstract - This paper presents a time series prediction method using a fuzzy rule-based system. Extracting fuzzy
rules by performing a simple one-pass operation on the training data is quite attractive because it is easy to
understand, verify, and extend. The simplest method is probably to relate an estimate, x(n+k), with past data such as
x(n), x(n-1), .x(n-m), where k and m are prefixed positive integers. The relation is represented by fuzzy if-then rules,
where the past data stand for premise part and the predicted value for consequence part. However, a serious problem
of the method is that it cannot handle nonstationary data whose long-term mean is varying. To cope with this, a new
training method is proposed, which utilizes the difference of consecutive data in a time series. In this paper, typical
previous works relating time series prediction are briefly surveyed and a new method is proposed to overcome the
difficulty of predicting nonstationary data. Finally, computer simulations are illustrated to show the improved results for

various time series.
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1. Introduction

A time series is defined as a sequential set of data
measured over time. The sequence is important in time
series analysis, because the information on the source is
embedded in it. The most crucial assumption that we
use in time series analysis is that a source of a time
series is governed by a deterministic dynamic system.

Time series prediction involves forecasting the future
by understanding the past. It has been widely studied
by many researchers. Most of works on prediction have
been conducted from the viewpoint of stochastic models
such as MA (moving average), IMA (integrated moving
average) and ARIMA (autoregressive integrated moving
average) [1-2]. One of the breakthroughs in this area
began with the development of computational intelligence
paradigms, including fuzzy logic systems and neural
networks in the 1980s [3]. Both methodologies are well
known not only as universal approxXimator [4-5] but also
for their capability of learning. The most important aspect
of universal approximator is that it can be applied to any
nonlinear modeling problem. However it should be noticed
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that there are many other types of universal approximator
and the advantage of fuzzy logic system (as well as
neural networks) as a universal approxXimator lies in the
fact that it can be easily and efficiently implemented.

In this paper, we address the time series prediction
using fuzzy rule-based system. Extracting fuzzy rules
from a time series means expressing the dynamic system
in terms of fuzzy if-then rules. The first procedure for
building fuzzy rule-based system is training from data.
There are many techniques for training of fuzzy logic
systems. For example, Wang [6] shows some of them
using back-propagation, orthogonal least squares, nearest
neighborhood clustering, and one-pass operation. In this
paper, we adopt the idea of one-pass operation. The
technique based on the one-pass operation produces
if-then fuzzy rules from every input and output pair.
The simple training can avoid computationally expensive
procedure, but the range of input values should be
specified a priori and no optimization can be made after
training.

A system with unknown dynamics is approximated or
represented by a number of fuzzy rules. Extracting
fuzzy rules from data has been investigated [7-8]. This
is true as long as the dynamics can be described in
terms of fuzzy rules. Due to the intelligence of describing
nonlinear systems by fuzzy logic, the prediction of
unknown systems using fuzzy rule-based systems has
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Additional
refinements coupled with genetic algorithms are reported
in the literature [11-121.
algorithms is resulted from fine tuning of fuzzy

been successful in nonlinear areas [8-10).
Improvement using genetic
membership function. Early work of chaotic time series
prediction using fuzzy if-then rules is found in [13].
Fusing neural network architecture to fuzzy system, there
have been many attempts to predict time series. Kozma
et al. [14] show application of fuzzy neural network
(FuNN) to utilize and generate knowledge during an
iterative learning and adaptation procedure. Maguire et
al. [15] propose an architecture employing fuzzy reasoning
system with efforts to reduce the dimensions of the
network, where the author claim the advantages of the
architecture for hardware implementation. As a practical
application, Chiu [16] presents a prediction system for the
Taipeis unemployment rate series. The author uses the
system to
unemployment and prediction is made using neural
network architecture.

idea of fuzzy modeling data relating

Many applications, however, show that a time series is
Examples of this include
many indices related to real life taken from economy,

not necessarily stationary.

consumption, production, weather, biomedical engineering,
and many other fields. A nonstationary system, in strict
sense, cannot be represented by fuzzy rules, because a
fixed number of rules can describe a time invariant
system, which obviously rules out the nonstationarity.
Recently intensive efforts have been made to analyze
nonstationary time series: Yee and Haykin [17] report a
comprehensive work on a dynamic regularized radial
basis function network for nonlinear and nonstationary
time series prediction. Fitting time series model to
nonstationary processes is presented by Dahlhaus [18].
For specific areas, Hori et al. [19] address nonstationary
property of biomedical signal, while Lesch and Lowe [20]
present a framework combining stochastic and deter-
ministic description for nonstationary financial time series.
In this paper, we propose a method of building fuzzy
rules for prediction, which utilizes the difference of
consecutive data in a time series. Computer simulations
show that a nonstationary signal can be represented by
new fuzzy rules and the performance of prediction is
improved by applying the proposed method to time series
data such as Mackey Glass time series and Lorenz data.

2. Nonstationarity

Stationarity has always played a major role in time
series analysis. The power spectrum, for example, is
defined for stationary processes and time series analysis
in the frequency domain depends on the assumption of
stationarity. The important ARMA model is also a

stationary time series model.

Unfortunately, many empirical data show that they
have no fixed average, which means they are
nonstationary. Nonstationary data cannot be expressed in
terms of a fixed number of fuzzy rules since no rule
exists for the data that are not cbserved in the training
process. However, if nonstationary data shows some
local homogeneity, then stationary model can be derived
by supposing some proper difference of the nonstationary
process. These models are called autoregressive integrated
moving average (ARIMA) processes [1]. The ARMA
model and ARIMA model can be expressed respectively
as

x(ny= ) a(p)x(n-p)+ f,b(n)e(n -9 M
p=l

9=l
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Fig. 1. Time series of daily temperature from [2].

Fig. 2. Difference of the temperature data shown in Fig. 1.

where x(n) is the time series, e(n) is the external
input, and x(n), is defined as x(n)-x(n-1). The first part
of the right-hand side of (1) is autoregressive part, and
the second part is moving average part. In Fig. 1, it is
illustrated that x(n)‘s form a nonstationary time series
data, while its difference in Fig. 2, x(n)'s become a
stationary time series. We exploit this observation.
Equations (1) and (2) do not reflect the exact structure



we want to use in this paper, since the time series data
x(n) is designated as a fuzzy linguistic value and a(p) is
a degree of fulfillment in the training process. More
importantly, only autoregressive part of (2) is used and
fuzzified x(n) can be expressed as a nonlinear
fuzzified x(n-1), x(n-2),.x(n-P).
Therefore, the fuzzy rules derived in the training process
contain information regarding the difference of data, more
specifically, the difference of consecutive data in a time
series.

combination  of

3. Fuzzy Predictor

A k-step ahead fuzzy prediction can be mathematically
described as

X(n+k)=F{x(n),x(n-1),..,x(n-m)} (3)

where F represents a nonlinear mapping from a set of
time series, {x(n), x(n-1), .. x(n-mJ} onto k-step ahead

estimate, x(n+k)

It should be noted in (3) that input sampling time is
normalized for simplicity and not all of the m inputs are
necessarily used as an input variable to F. When k is
small, it is called short-term prediction. Otherwise, it is
long-term prediction and it is, in general, very difficult to
produce good results. The mapping of F can be
represented by fuzzy rules such as

If x(n) is Tdn) and x(n-1) is Tx(n-1) .. and x(n-m)
is T(n-m) , then x(n+k) is Tu(n+k) )

where x's are input variables and T)'s are fuzzy
linguistic values partitioned according to the range of the
input variables. Conventional fuzzy prediction methods
[6-7] based on the above rule, are applicable only to the
time series whose statistics is stationary or wide sense
stationary. Otherwise, they fail because fuzzy rules are
not able to describe the dynamics of nonstationary time
series. In nonstationary time series, the average tends to
change, and the fuzzy predictor may not accommodate the
changes.

To resolve this difficulty, we restate the k-step ahead
prediction as

Vi(n +k) = F, {Vx(n), Vx(n ~1),.., Vx(n — m)} ®)

where x(n) = x(n)-x(n-1) and the mapping of Fk
should be determined from the difference of consecutive
data in a time series. Accordingly, the rule for a new
mapping of Fk should be modified as
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If x(n) is Ta(n) and x(n-1) is Ton-1) .. and x(n-m)
is Tao(n-m) , then x(n+k) is Ta(n+k) (6)

As shown in the rule (6), the proposed method learns
the difference of consecutive data in a time series rather
than values of time series. Therefore, any time series
showing some tendency of drifting becomes predictable
by the proposed method. It indicates that the differences
of consecutive time series are valuable information in
describing dynamics of systems, particularly nonstationary
ones. An example is detailed in the next section. An
additional improvement obtained is the reduction of
prediction error, which will be described in the following
section.

The procedure for building fuzzy rules for the fuzzy
predictor can be described as follows:

Step 1: Divide the range of difference of consecutive
data in a time series.

Find the distribution of x's in a time series. Assume
they are in the interval [dmin, dmax], then divide it into
2n+1 regions and assign fuzzy membership function to
each region.

Step 2: Obtain fuzzy rules from data pairs.

In the training stage, the input, the difference of
consecutive data, is assigned to a suitable fuzzy
membership function whose fulfillment of degree is the
highest. Since the fuzzy membership functions are
overlapped in most cases, a particular input value may
have multiple membership function. For example, if X; is
06 in T, and 04 in T; , then xi belongs to the fuzzy
membership function T; . Fuzzy rules are obtained by
assigning each data to a fuzzy membership function and
can be expressed as (6).

Step 3: Resolve conflicting rules.

In the above step, we can obtain fuzzy rules that have
the same premise with different consequence. In order to
resolve such conflict, we choose the rule whose minimum
degree is the largest. Minimum degree of a rule is
defined as the smallest degree of fulfillment to the
premise and the consequence part of a rule For
example, assume we have two conflicting rules as
follows: '

Rulel: If x; is FA and xz is FB, then y is FY1 with
degree of fulfillment (FA(x))=0.6, FB(x2)=0.7, FY1(y)=0.9),

Rule2: If x; is FA and xz is FB, then y is FY2 with

degree of fulfillment (FA(x;)=0.7, FB(x2)=0.7, FY2(y
)=0.8).
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Since the minimum degree of the first rule is 0.6 and
the second is 0.7 and the latter, Rule 2, is preferred as a
rule.  Therefore, in the training process, the conflicting
rules are resolved by choosing the largest minimum degree
of a rule. Wang [8] use another method to resolve the
problem by assigning a degree of product of membership
functions and selecting one with the largest product.

4. Simulations

In this section, we present two experiments that show
the advantage of the proposed method. First, the
representation of a nonstationary signal is attempted
using fuzzy rules. Second, the prediction of the well-
known time series including Mackey Glass time series,
Lorenz data, and temperature data [2] is illustrated. In
both experiments except temperature data, we used the
first 700 data for training and applied the algorithm to
following 300 data for the purpose of prediction.
Mandanis fuzzy reasoning is employed for the inference
procedure and the center of area (COA) method is
utilized for a defuzzifier.

41. Representation of nonstationary signals

Figure 2 shows the data used in the simulation. The
data can be expressed as

y =sin(ax) + bx %)

where a and b are positive numbers. It is therefore
an increasing function with periodicity. The first 700
data are used to build the fuzzy rules described in (4)
and (6), and their results are depicted in Figure 3 and 4,
respectively. With the conventional fuzzy rules on (4),
rules are missing in the points where the outputs are
zero. This is to say, that the corresponding inputs at
these points have no match in the premise part of the
fuzzy rules based on (4). In contrast, representing (7)
with the fuzzy rules based on (6) works fine as shown
in Figure 4. Equation (5) explains why the nonstationary
signal of (7) can be trained into fuzzy inference system.

4.2 Prediction of time series

Although the proposed fuzzy prediction method
demonstrates better performance in representing the

nonstationary signal in the previous section, it is not

evident if it holds true for time series prediction. In
order to investigate the issue, we carry out computer
simulation with two sets of data.
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Fig. 3. Data generated by (7) for experiment.

Fig. 4. Representation of data in [701, 1000] in Fig. 3
using rule (4). [Dotted line is prediction. The
points producing series of zeros indicate that no
rule is applicable for given input.]

Fig. 5. Representation of data in [701, 1000] in Fig. 3
using rule (6). [Dotted line is prediction.]

[Mackey-Glass time series]
Mackey-Glass time series are obtained from the
following equation:



dx(t) _ 0.2x(t~7) ~0.1x(1)
d  1+x°¢-1) (8)

The first 700 data are used to build fuzzy rules and
291 points (from n=710 to n=1000) are predicted as shown
in Figs. 6 and 7, where m=8 and the number of partition
for the inputs is 14. Figs. 6 and 7 are obtained from the
rules based on (4) and (6), respectively.

Fig. 6. Prediction of Mackey-Glass time series using
rule (4). [Dotted line is prediction, solid line is
real value.]

Fig. 7. Prediction of Mackey-Glass time series using
rule (6). [Dotted line is prediction, solid line
is real value.]

[Lorenz data)

Lorenz data is generated from the well-known Lorenz
chaotic equation and we observe only x variable in the
In the same way, we compare the
performance of the prediction and the results are shown
in Figs. 7 and 8, where m=8 and the number of partition
for the inputs is 9.

simulation.

[Daily Temperature Datal
In the previous examples, we obtain data from the
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Fig. 8. Prediction of Lorenz data using rule (4).
[Dotted line is prediction, solid line is real
value.]

Fig. 9. Prediction of Lorenz data using rule (6).
[Dotted line is prediction, solid line is real
value.]

equations and attempt to build the fuzzy rules to describe
the dynamics. The results show difference of data is
more valuable in predicting a time series. At this point,
however, we may have questions: Does it work well on
nonstationary data? Isnt it due to the deterministic
equation that prediction fits well to real data? In fact,
both data Mackey-Glass time series and Lorenz data
are not quite evident if they are nonstationary, and the
difference of data is always used when we solve
differential equations with computer.

Temperature data shown in Fig. 1. is a proper example
in those aspects. It is nonstationary data with seasonal
effects and not generated by deterministic equations.
Figs. 10 and 11 are the results of prediction based on
rule (4) and (6), respectively. The first 200 data in Fig.
1 and 2 are used to build fuzzy rules, and the remaining
165 points are predicted using m=2 and k=1 in (4) and
(6).
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Fig. 11. Prediction of daily temperature data using rule (6).

Tables 1-3 summarize the prediction error in terms of
RMSE (Root Mean Square Error).
the table shows the number of membership functions.
The second column has three sub-columns showing the
prediction error calculated by the conventional method
and the proposed method using two different ranges of
membership functions denoted by [xmin, xmax],
respectively. The first range used in the conventional
method is derived from the minimum and the maximum
values of time series (CASE 1). The second range is
derived is from the minimum and the maximum of the
difference of any two values (CASE 2).
is obtained from the minimum and the maximum of two
consecutive data of the time series (CASE 3). In general
the proposed method reduces the prediction error.
Although it is not explicitly described in this paper, an
important finding was that the new method generated
fewer rules in the prediction of CASE 2 than in the
prediction of CASE 1. CASE 3 generated the same or
more rules than CASE 2.

The first column of

The last range
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Table 1. Prediction error for Mackey~-Glass time series

in RMSE
Range of inputs
Number of | Error by the Error by the proposed
input conventional method
membership method
[0:1.5] [-15:15] |[-0.08:0.06]
6 0.0516 0.1054 0.0080
14 0.0274 0.0124 0.0041
29 0.0156 0.0092 0.0156

Table 2. Prediction error for Lorenz data in RMSE.

Range of inputs
Number of | Error by the Error by the proposed
input conventional method
membership method
functions (CASE 1) | (CASE2) (CASE 3)
[-16:18] [-34:34] |[-1.8:24]
9 0.8694 0.8596 0.2837
16 0.4845 0.3028 0.3663
33 1.1927 0.4960 05151

Table 3. Prediction error for daily temperature data in

RMSE
Range of inputs
Number of | Error by the Error by the proposed
input conventional .method
membership method
functions (CASE 1) (CASE 2) (CASE 3)
[-2:24] [-26:26] |[[-5.56.8]
9 3.0975 2.0153 2.0970
i5 2.8929 2.1842 2.1307
32 3.3411 2.0628 2.0659




5. Conclusions

Time series analysis has been studied by many
researchers for a long time. Modeling and prediction of
time series are the main streams of the research.
However many time series in real life have both
nonlinear and nonstationary properties and it has been a
big challenge to take them into proper consideration in
the analysis. Recently developed computational intelligence
paradigms including neural networks and fuzzy logic
systems have addressed some of the issues relating those
properties.

In this paper, a new fuzzy learning method for time
series prediction utilizing the difference of consecutive
data has been proposed. Training of time series is
accomplished in the one-pass operation and two
simulations were carried out: First, the representation of
a nonstationary signal is attempted using fuzzy rules.
Second, the prediction of the well-known time series
including Mackey Glass time series, Lorenz data, and
daily temperature data is illustrated.

Result showed that a nonstationary signal given by
(5), an increasing sinusoidal function, can be represented
by the fuzzy rules based on the difference of consecutive
data. Reduction of prediction error was also achieved by
applying the proposed method in the second simulation.

Future work will be aimed to apply the idea of
difference of consecutive data to the various prediction
schemes based on fuzzy logic paradigm. We expect
enhanced performance in modeling and prediction, because
the differences of consecutive data in time series are
more adequate in describing nonstationarity than the

values themselves.
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