• 제목/요약/키워드: fuzzy rule vector

검색결과 29건 처리시간 0.02초

데이터와 클러스터들의 대표값들 사이의 거리를 이용한 퍼지학습법칙 (Fuzzy Learning Rule Using the Distance between Datum and the Centroids of Clusters)

  • 김용수
    • 한국지능시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.472-476
    • /
    • 2007
  • 학습법칙은 신경회로망의 성능에 중요한 영향을 미친다. 본 논문은 데이터와 클래스들의 대표값들 사이의 거리를 고려하여 학습률을 정하는 새로운 퍼지 학습법칙을 제안한다. 클래스들의 대표값을 조정할 때, 이러한 고려는 outlier에 비하여 결정경계선 근처에 있는 데이터의 반영도를 높임으로써 outlier의 클래스의 대표값에 미치는 영향도를 낮출 수 있다. 따라서 outlier들이 결정경계선을 악화시키는 것을 방지할 수 있다. 이 새로운 퍼지 학습법칙을 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 제안한 퍼지 신경회로망과 다른 감독 신경회로망들의 성능을 비교하기 위하여 iris 데이터를 사용하였다. iris 데이터를 사용하여 테스트한 결과 제안한 퍼지 신경회로망의 성능이 우수함을 보였다.

클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using A Learning Rule Considering the Distances Between Classes)

  • 김용수;백용선;이세열
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.460-465
    • /
    • 2006
  • 본 논문은 입력 벡터와 클래스들의 대표값들간의 유클리디안 거리들을 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망 4에 적용하였다. 이 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류역전파 신경회로망과 LVQ 알고리듬보다 성능이 우수하였다.

A Note on Fuzzy Support Vector Classification

  • Lee, Sung-Ho;Hong, Dug-Hun
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.133-140
    • /
    • 2007
  • The support vector machine has been well developed as a powerful tool for solving classification problems. In many real world applications, each training point has a different effect on constructing classification rule. Lin and Wang (2002) proposed fuzzy support vector machines for this kind of classification problems, which assign fuzzy memberships to the input data and reformulate the support vector classification. In this paper another intuitive approach is proposed by using the fuzzy ${\alpha}-cut$ set. It will show us the trend of classification functions as ${\alpha}$ changes.

퍼지 시스템의 2계층 퍼지 시스템으로의 변환 방법 (A method of converting fuzzy system into 2 layered hierarchical fuzzy system)

  • 주문갑
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.303-308
    • /
    • 2006
  • 본 논문에서는 다입력 퍼지 로직 시스템에서 생기는 퍼지 규칙수의 기하급수적 증가를 막기 위하여, 주어진 퍼지 시스템의 THEN 부분을 이용하여 퍼지 규칙 벡터를 정의하고, 이를 이용하는 2계층의 계층 퍼지 시스템으로 변환하는 방법을 제시한다. 여기에서, 1번째 계층에서는 주어진 퍼지 시스템으로부터 생성되는 일차독립의 퍼지 규칙 벡터를 사용하고, 2계층에서는 1계층에서 사용된 퍼지 규칙 벡터들의 선형 합을 사용한다. 변환된 2계층의 퍼지 시스템은 주어진 퍼지 시스템과 동일한 근사 능력을 가질 뿐 아니라, 더 적은 수의 퍼지 규칙을 가짐을 보인다.

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.800-804
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning )rector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기존의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC (Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

동등 변환 2계층 퍼지 시스템의 규칙 자동 학습 (Automatic learning of fuzzy rules for the equivalent 2 layered hierarchical fuzzy system)

  • 주문갑
    • 한국지능시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.598-603
    • /
    • 2007
  • 본 논문에서는 다입력 퍼지 시스템에서 생기는 퍼지 규칙수의 기하급수적 증가를 막기 위하여, 1번째 계층에서는 주어진 퍼지 시스템으로부터 선형 독립의 퍼지 규칙 벡터를 구성하여 사용하고, 2계층에서는 1계층에서 사용된 퍼지 규칙 벡터들의 선형합을 사용하는 동등 변환된 2계층 퍼지시스템 구조에서, steapest descent 알고리듬을 이용한 퍼지 규칙의 자동 학습을 다룬다. 학습 방법의 타당성을 보이기 위하여, 공과 막대 시스템을 제어하는 기존의 퍼지 시스템을 학습한 결과를 보인다.

Prediction of golden time for recovering SISs using deep fuzzy neural networks with rule-dropout

  • Jo, Hye Seon;Koo, Young Do;Park, Ji Hun;Oh, Sang Won;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4014-4021
    • /
    • 2021
  • If safety injection systems (SISs) do not work in the event of a loss-of-coolant accident (LOCA), the accident can progress to a severe accident in which the reactor core is exposed and the reactor vessel fails. Therefore, it is considered that a technology that provides recoverable maximum time for SIS actuation is necessary to prevent this progression. In this study, the corresponding time was defined as the golden time. To achieve the objective of accurately predicting the golden time, the prediction was performed using the deep fuzzy neural network (DFNN) with rule-dropout. The DFNN with rule-dropout has an architecture in which many of the fuzzy neural networks (FNNs) are connected and is a method in which the fuzzy rule numbers, which are directly related to the number of nodes in the FNN that affect inference performance, are properly adjusted by a genetic algorithm. The golden time prediction performance of the DFNN model with rule-dropout was better than that of the support vector regression model. By using the prediction result through the proposed DFNN with rule-dropout, it is expected to prevent the aggravation of the accidents by providing the maximum remaining time for SIS recovery, which failed in the LOCA situation.

Black-Box Classifier Interpretation Using Decision Tree and Fuzzy Logic-Based Classifier Implementation

  • Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권1호
    • /
    • pp.27-35
    • /
    • 2016
  • Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.

클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using A Learning Rule Considering the Distance Between Classes)

  • 김용수;백용선;이세열
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.109-112
    • /
    • 2006
  • 본 논문은 클래스들의 대표값들과 입력 벡터와의 거리를 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 이 새로운 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류 역전파 신경회로망과 LVQ 알고리즘보다 성능이 우수하였다.

  • PDF

퍼지 공간 분할에 따른 퍼지 규칙의 자동생성 (Producting Fuzzy Rules throungh Partition of Fuzzy Space)

  • 이양원
    • 인지과학
    • /
    • 제4권1호
    • /
    • pp.123-152
    • /
    • 1993
  • 본 논문에서는 주어진 문제 영역상의 자료를 특성에 따라 분류하고,자동적으로 퍼지규칙을 생성할 수 있는 방법을 제안한다. 제안된 방법은 기존의 방법에 비하여 효율적으로 퍼지 공간을 분할하고,분할된 퍼지공간의 부분적인 합병을 통하여 퍼지규칙의 수를 최적화한다.또한,본 논문에서는 생성된 퍼지규칙들이 정형적인 형태를 유지하도록 하며,이용상의 적응력을 높이기 위하여 누적-히스토그램을 이용하여 귀속 함수를 정의하는 방법을 제안한다.