• Title/Summary/Keyword: fuzzy reliability

Search Result 261, Processing Time 0.026 seconds

Fuzzy system reliability using intuitionistic fuzzy Weibull lifetime distribution

  • Kumar, Pawan;Singh, S.B.
    • International Journal of Reliability and Applications
    • /
    • v.16 no.1
    • /
    • pp.15-26
    • /
    • 2015
  • Present study investigates the fuzzy reliability of some systems using intuitionistic fuzzy Weibull lifetime distribution, in which the lifetime parameters are assumed to be fuzzy parameter due to uncertainty and inaccuracy of data. Expressions for fuzzy reliability, fuzzy mean time to failure, fuzzy hazard function and their ${\alpha}$-cut have been discussed when systems follow intuitionistic fuzzy Weibull lifetime distribution. A numerical example is also taken to illustrate the methodology to calculate the fuzzy reliability characteristics of systems.

Simulation of Fuzzy Reliability Indexes

  • Dong, Yu-Ge;Chen, Xin-Zhao;Cho, Hyun-Deog;Kwon, Jong-Wan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.492-500
    • /
    • 2003
  • By means of the transformation from the problem of fuzzy reliability to the problem of general reliability, a model for analyzing fuzzy reliability is introduced in this paper Because of the complexity of the Problem of the fuzzy reliability, generally speaking, the analytical equations for calculating fuzzy reliability indexes of machine part cannot be obtained in most cases. Therefore, in this paper, an approach is given wherein progressions are employed to calculate them, or a simulation approach is used to estimate them by expressing general reliability indexes as progressions. By utilizing the approach put forwards in the paper, the calculating quantity for analyzing the fuzzy reliability will be reduced : even substantially reduced sometimes. Some examples are taken to explain the feasibility of the model and a simulation approach.

Reliability Approach to Network Reliability Using Arithmetic of Fuzzy Numbers (모호수 연산을 적용한 네트워크 신뢰도)

  • Kim, Kuk
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.103-107
    • /
    • 2014
  • An algorithm to get network reliability, where each link has probability of fuzzy number, is proposed. Decomposition method and fuzzy numbers arithmetic are applied to the algorithm. Pivot link is chosen one by one from start node recursively at time of decomposition, and arithmetic of fuzzy complementary numbers is included at the same time. No criteria of pivot link selection and the recursive calculation make the algorithm simple.

Time-variant structural fuzzy reliability analysis under stochastic loads applied several times

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.525-534
    • /
    • 2015
  • A new structural dynamic fuzzy reliability analysis under stochastic loads which are applied several times is proposed in this paper. The fuzzy reliability prediction models based on time responses with and without strength degeneration are established using the stress-strength interference theory. The random loads are applied several times and fuzzy structural strength is analyzed. The efficiency of the proposed method is demonstrated numerically through an example. The results have shown that the proposed method is practicable, feasible and gives a reasonably accurate prediction. The analysis shows that the probabilistic reliability is a special case of fuzzy reliability and fuzzy reliability of structural strength without degeneration is also a special case of fuzzy reliability with structural strength degeneration.

Fuzzy programming for improving redundancy-reliability allocation problems in series-parallel systems

  • Liu, C.M.;Li, J.L.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.79-94
    • /
    • 2011
  • Redundancy-reliability allocation problems in multi-stage series-parallel systems are addressed in this study. Fuzzy programming techniques are proposed for finding satisfactory solutions. First, a multi-objective programming model is formulated for simultaneously maximizing system reliability and minimizing system total cost. Due to the nature of uncertainty in the problem, the fuzzy set theory and technique are used to convert the deterministic multi-objective programming model into a fuzzy nonlinear programming problem. A heuristic method is developed to get satisfactory solutions for the fuzzy nonlinear programming problem. A Pareto optimal solution is found with maximal degree of satisfaction from the interception area of fuzzy sets. A case study that is related to the electronic control unit installed on aircraft engine over-speed protection system is used to implement the developed approach. Results suggest that the developed fuzzy multi-objective programming model can effectively resolve the fuzzy and uncertain problem when design goals and constraints are not clearly confirmed at the initial conceptual design phase.

  • PDF

Fuzzy Sets Application to System Reliability Analysis (시스템 신뢰도 분석에서의 퍼지집합 응용)

  • Yun, Won-Young;Heo, Gil-Hwan
    • IE interfaces
    • /
    • v.6 no.2
    • /
    • pp.67-78
    • /
    • 1993
  • In this paper, we deal with the application of the fuzzy sets theory to evaluate and estimate the system reliability under the fault tree analysis. We formulate the uncertainty of component reliability to fuzzy sets, and propose a procedure for obtaining the system reliability in case the system structure is described by fault tree. An importance measure of each component is proposed. Computer program for fuzzy fault tree analysis(FFTA) is developed using C language to obtain the system reliability and the component‘s fuzzy importance.

  • PDF

Fuzzy reliability analysis of laminated composites

  • Chen, Jianqiao;Wei, Junhong;Xu, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.665-683
    • /
    • 2006
  • The strength behaviors of Fiber Reinforced Plastics (FRP) Composites can be greatly influenced by the properties of constitutive materials, the laminate structures, and load conditions etc, accompanied by many uncertainty factors. So the reliability study on FRP is an important subject of research. Many achievements have been made in reliability studies based on the probability theory, but little has been done on the roles played by fuzzy variables. In this paper, a fuzzy reliability model for FRP laminates is established first, in which the loads are considered as random variables and the strengths as fuzzy variables. Then a numerical model is developed to assess the fuzzy reliability. The Monte Carlo simulation method is utilized to compute the reliability of laminas under the maximum stress criterion. In the second part of this paper, a generalized fuzzy reliability model (GFRM) is proposed. By virtue of the fact that there may exist a series of states between the failure state and the function state, a fuzzy assumption for the structure state together with the probabilistic assumption for strength parameters is adopted to construct the GFRM of composite materials. By defining a generalized limit state function, the problem is converted to the conventional reliability formula that enables the first-order reliability method (FORM) applicable in calculating the reliability index. Several examples are worked out to show the validity of the models and the efficiency of the methods proposed in this paper. The parameter sensitivity analysis shows that some of the mean values of the strength parameters have great influence on the laminated composites' reliability. The differences resulting from the application of different failure criteria and different fuzzy assumptions are also discussed. It is concluded that the GFRM is feasible to use, and can provide an effective and synthetic method to evaluate the reliability of a system with different types of uncertainty factors.

Evaluation of the Probability of Failure in Rock Slope Using Fuzzy Reliability Analysis (퍼지신뢰도(fuzzy reliability) 해석기법을 이용한 암반사면의 파괴확률 산정)

  • Park, Hyuck-Jin
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.763-771
    • /
    • 2008
  • Uncertainties are pervasive in engineering geological problems. Therefore, the presence of uncertainties and their significance in analysis and design of slopes have been recognized. Since the uncertainties cannot be taken into account by the conventional deterministic approaches in slope stability analysis, the probabilistic analysis has been considered as the primary tool for representing uncertainties in mathematical models. However, some uncertainties are caused by incomplete information due to lack of information, and those uncertainties cannot be handled appropriately by the probabilistic approach. For those uncertainties, the theory of fuzzy sets is more appropriate. Therefore, in this study, fuzzy reliability analysis has been proposed in order to deal with the uncertainties which cannot be quantified in the probabilistic analysis due to the limited information. For the practical example, a slope is selected in this study and both the probabilistic analysis and the fuzzy reliability analysis have been carried out for planar failure. In the fuzzy reliability analysis, the dip angle and internal friction angle of discontinuity are considered as triangular fuzzy numbers since the random properties of the variables cannot be obtained completely under the conditions of limited information. In the study, the fuzzy reliability index and the probabilities of failure are evaluated from fuzzy arithmetic and compared to those from the probabilistic approach using Monte Carlo simulation and point estimate method. The analysis results show that the fuzzy reliability analysis is more appropriate for the condition that the uncertainties arise due to incomplete information.

Posbist Reliability Analysis of Typical Systems

  • Huang, Hong-Zhong;Tong, X.;He, L.P.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.2
    • /
    • pp.137-151
    • /
    • 2007
  • Posbist reliability of typical systems is preliminarily discussed in Cai (1991). In this paper, we focus on the posbist reliability analysis of some typical systems in depth. First, the lifetime of the system is dealt as a fuzzy variable defined on the possibility space (U, ${\phi}$, $P_{oss}$) and the universe of discourse is expanded from (0, $+{\infty}$) to ($-{\infty},\;+{\infty}$). Then, a concrete possibility distribution function of the fuzzy variable is given, i.e., a Gaussian fuzzy variable. Finally, posbist reliability of typical systems (series, parallel, series-parallel, parallel-series, cold redundant system) is deduced. The expansion makes the proofs of some theorems straightforward and allows us to easily obtain the posbist reliability of typical systems. To illustrate the method a numerical example is given.

  • PDF

A Strategy of Selecting Critical Items for Reliability Tests Using Fuzzy Inference (퍼지추론을 이용한 신뢰성 시험 대상 품목 선정 전략)

  • Son, Young-Beom;Yang, Jung-Min
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.4
    • /
    • pp.205-214
    • /
    • 2018
  • The reliability test is a crucial step for ensuring robustness of high-cost and complex weapon systems. In this paper, we present a set of quantitative criteria to select critical parts or components in weapon systems for the reliability test, and implement a fuzzy inference system by applying developed criteria to fuzzy theory. We classify the selection criteria of critical parts or components into four fuzzy sets and membership functions. A fuzzy inference rule is proposed based on the AHP (Analytic Hierarchy Process) analysis technique so as to derive a convincing reliability test. The credibility of the fuzzy inference system is confirmed through a case study using actual equipment data exacted from an existent weapon system.