• 제목/요약/키워드: fuzzy relational product

검색결과 15건 처리시간 0.021초

Comparative Study on the Selection Algorithm of CLINAID using Fuzzy Relational Products

  • 노찬숙
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.849-855
    • /
    • 2008
  • The Diagnostic Unit of CLINAID can infer working diagnoses for general diseases from the information provided by a user. This user-provided information in the form of signs and symptoms, however, is usually not sufficient to make a final decision on a working diagnosis. In order for the Diagnostic Unit to reach a diagnostic conclusion, it needs to select suitable clinical investigations for the patients. Because different investigations can be selected for the same patient, we need a process that can optimize the selection procedure employed by the Diagnostic Unit. This process, called a selection algorithm, must work with the fuzzy relational method because CLINAID uses fuzzy relational structures extensively for its knowledge bases and inference mechanism. In this paper we present steps of the selection algorithm along with simulation results on this algorithm using fuzzy relational products, both harsh product and mean product. The computation results of applying several different fuzzy implication operators are compared and analyzed.

Acceleration of Building Thesaurus in Fuzzy Information Retrieval Using Relational products

  • Kim, Chang-Min;Kim, Young-Gi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.240-245
    • /
    • 1998
  • Fuzzy information retrieval which uses the concept of fuzzy relation is able to retrieve documents in the way based on not morphology but semantics, dissimilar to traditional information retrieval theories. Fuzzy information retrieval logically consists of three sets : the set of documents, the set of terms and the set of queries. It maintains a fuzzy relational matrix which describes the relationship between documents and terms and creates a thesaurus with fuzzy relational product. It also provides the user with documents which are relevant to his query. However, there are some problems on building a thesaurus with fuzzy relational product such that it has big time complexity and it uses fuzzy values to be processed with flating-point. Actually, fuzzy values have to be expressed and processed with floating-point. However, floating-point operations have complex logics and make the system be slow. If it is possible to exchange fuzzy values with binary values, we could expect sp eding up building the thesaurus. In addition, binary value expressions require just a bit of memory space, but floating -point expression needs couple of bytes. In this study, we suggest a new method of building a thesaurus, which accelerates the operation of the system by pre-applying an ${\alpha}$-cut. The experiments show the improvement of performance and reliability of the system.

  • PDF

질의 응답 시스템에서 지식 설명의 의미적 포함 관계를 고려한 의미적 퍼지 함의 연산자 (Semantic Fuzzy Implication Operator for Semantic Implication Relationship of Knowledge Descriptions in Question Answering System)

  • 안찬민;이주홍;최범기;박선
    • 한국콘텐츠학회논문지
    • /
    • 제11권3호
    • /
    • pp.73-83
    • /
    • 2011
  • 질의 응답 시스템은 사용자의 질의에 대해 다른 사용자의 응답을 저장하고 보여 주는 시스템이다. 사용자의 질의를 만족시키는 응답을 정확히 검색하고자 노력하는 많은 연구들이 있었지만 이에는 근본적인 한계가 있었다. 따라서 질의 응답 시스템에서는 보조적인 방법으로 사용자의 질의를 만족시킬 가능성이 높은 다른 질의를 추천하는 방법이 사용되고 있다. 이전 연구에서 내용적으로 포함하는 정도가 큰 질의들을 하위 질의로서 추천하는 내용 기반 추천 방법으로서 퍼지 관계 곱 연산자(fuzzy relational product operator)를 사용하는 방법이 제안되었고, 기본적인 함의 연산자로서 Kleene-Dienes 연산자가 사용되었다. 하지만 Kleene-Dienes 연산자는 설명의 의미적 포함관계를 고려한 방법이 아니기 때문에 질의응답의 의미적 포함 정도를 계산하기에 적합하지 않다. 본 논문에서는 두 질의에 대한 설명의 의미적 포함관계를 고려한 새로운 함의 연산자를 제안한다. 새로운 연산자는 어떤 질의 및 응답 들이 다른 질의와 그 응답들에 의미적으로 포함되는 정도를 계산하도록 설계되었다. 실험을 통하여 새로운 함의 연산자를 적용한 퍼지 관계곱 연산자를 사용하면 사용자가 원하는 지식을 추천할 가능성이 높아짐을 보였다.

퍼지관계곱 기반 급성복통과 관련된 지능형 질환 진단시스템의 설계 및 구현 (A Design and Implementation of the Intelligent Diagnosis System for Diseases associated with Acute Abdominal Pain Based on Fuzzy Relational Products)

  • 현우석
    • 정보처리학회논문지B
    • /
    • 제10B권2호
    • /
    • pp.197-204
    • /
    • 2003
  • 현재까지 개발된 의료진단 시스템들은 인체 특정 질환을 염두에 두고 구체적 조건의 조합에 의존하여 진단 범주를 설정하는데 통상적으로 특정 장기에 제한되어 있어서 여러 가지 유형의 질환에 공통적으로 나타나는 중상을 진단하는 경우 조기에 정확한 진단을 내리기가 힘든 문제점을 지니고 있다. 급성복통(acute abdominal pain)은 전구 증상 없이 갑자기 복통이 발생하는 것으로 소화기 질환을 비롯한 여러 질환에서 환자들이 공통적으로 가장 흔하게 호소하는 증상으로 연관된 질환이 다양하여 의사들이 적절한 감별진단을 내리기가 쉽지 않다. 본 연구에서는 급성 복통과 연관된 질환의 감별진단 시스템으로서 기존의 DS-DAAP의 성능을 개선한 퍼지관계곱에 기반한 지능형 질환 진단시스템(IDS-DAAP)을 제안한다. 제안하는 시스템은 기존의 DS-DAAP와 비교해 볼 때 진단의 정확성을 높이면서 수행시간을 감소시켰다.

Prediction of User's Preference by using Fuzzy Rule & RDB Inference: A Cosmetic Brand Selection

  • Kim, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.353-359
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems (UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between 0 -1. Second, RDB and SQL (Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS (Knowledge Management Systems).

Prediction of User Preferred Cosmetic Brand Based on Unified Fuzzy Rule Inference

  • 김진성
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.271-275
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this Purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between $0\∼1$. Second, RDB and SQL(Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS(Knowledge Management Systems)

  • PDF

퍼지이론을 응용한 효율적 감성 수집과 분석에 관한 연구 (A Study of the Effective Method for Collecting and Analyzing Human Sensibility Applied Fuzzy Set Theory)

  • 백승렬;박범
    • 대한인간공학회지
    • /
    • 제17권1호
    • /
    • pp.47-54
    • /
    • 1998
  • Product design and development is very important process in enterprise activities. Reducing development time and reflecting consumer's needs is required to product design and development for increasing benefit and decreasing cost. Human sensibility ergonomics is one of the important technology of R&D in product development. However, the subjective method of human sensibility ergonomics has several problems to analyze and to Quantify experimental data and objective method of human sensibility ergonomics is still in process on study. In this research, new analyzing method is proposed for the subjective human sensibility ergonomics applied with fuzzy set theory. What is the useful theory for controlling uncertain type of information like human mind? This approach is more effective method for analyzing consumer's needs for product design and development process. At collecting needs, certainty scale is added for adapting hedge of fuzzy function. Using a kind of union operator, synthesize each item to analyze identification of each item with fuzzy hamming distance. Identification of analysis is classified with the relational weight using Relationship Chart Method, and is drawn the relationship diagram for clustering each item. A case study with sample test is conducted and demonstrated with this suggested method for more effective way.

  • PDF

감성공학적 제품개발 시스템 구현에 관한 연구 (A Study on Implementation of Human Sensibility Ergonomics for Product Development)

  • 변상법;이동길;남택우;손승진;이순요
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1997년도 춘계학술대회논문집
    • /
    • pp.196-199
    • /
    • 1997
  • This paper describes the implementation process of Virtual Modeling system for a customer-oriented product. The human sense is measured and analyzed by physical design factors and can be applied also for the product design. The first step implementing virtual modeling is to make a human sensibility("Kansei") database. Human sensibility database is constructed with the relational data of Kansei words and design factors. The next step is extraction the design information from the human sensibility database by fuzzy inference algorithm. This design information is used for the input data for the graphic database. Virtual implementation software compounds 3D shape of product. The final product can be modified according to the customer's requirement.quirement.

  • PDF

감성제품개발을 위한 감성 이미지 디자인 프로세스 개발에 관한 연구 (A Study on the Development of Image Design Process Based on Human Sensibility Ergonomics for Product Development)

  • 이순요;양선모;변상섭
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1997년도 한국감성과학회 연차학술대회논문집
    • /
    • pp.33-36
    • /
    • 1997
  • This paper describes an image design process for product development based on human sensibility ergonomics.. The human sensibility about product image can be measured through some statistical methods and translated into product design factors by some mathematical inference logics. This results also can be presented by 3D computer graphic tools, In order to integrate the above processess, a image design process on human sensibility database. Human sensibility database is constructed with the relational ddta of some adjective words and design factors, The next step is to extract the design information from the human sensibility dataabase by fuzzy inference algouithm. This information is used for the input data for the graphic presentation. The final product can be modified according to the customer's requirement.

  • PDF

논리회로의 고장진단을 위한 퍼지 테스트생성 기법 (Fuzzy Test Generation for Fault Detection in Logic Circuits.)

  • 조재희;강성수;김용기
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.106-110
    • /
    • 1996
  • 고밀도 집적회로(VLSI)의 설계 과정에 있어 테스트(test)는 매우 중요한 과정으로서, 회로내의 결함(fault)을 찾기 위해 일련의 입력값을 넣어 그 출력값으로 고장 여부를 판단한다. 회로의 테스트를 위하여 사용되는 일련의 입력값을 테스트패턴(test pattern)이라 하며 최고 2n개의 테스트패턴이 생성될 수 있다. 그러므로 얼마나 작은 테스트패턴을 사용하여 회로의 결함 여부를 판단하느냐가 주된 관점이 된다. 기존의 테스트 패턴 생성 알고리즘인 휴리스틱(heuristic)조건에서 가장 큰 문제점은 빈번히 발생하는 백트랙(backtrack)과 이로 인한 시간과 기억장소의 낭비이다. 본 논문에서는 이러한 문제점을 보완하기 위해 퍼지 기법을 이용한 새로운 알고리즘을 제안한다. 제안된 기법에서는 고장신호 전파과정에서 여러개의 전파경로가 존재할 때, 가장 효율적인 경로를 선택하는 단계에서 퍼지 관계곱(Fuzzy Relational Product)을 이용한다. 이 퍼지 기법은 백트랙 수를 줄이고 기억장소와 시간의 낭비를 줄여 테스트 패턴 생성의 효율을 증가시킨다.

  • PDF