• Title/Summary/Keyword: fuzzy reasoning approach

Search Result 65, Processing Time 0.024 seconds

A Fuzzy Logic System for Detection and Recognition of Human in the Automatic Surveillance System (유전자 알고리즘과 퍼지규칙을 기반으로한 지능형 자동감시 시스템의 개발)

  • 장석윤;박민식;이영주;박민용
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.237-240
    • /
    • 2001
  • An image processing and decision making method for the Automatic Surveillance System is proposed. The aim of our Automatic Surveillance System is to detect a moving object and make a decision on whether it is human or not. Various object features such as the ratio of the width and the length of the moving object, the distance dispersion between the principal axis and the object contour, the eigenvectors, the symmetric axes, and the areas if the segmented region are used in this paper. These features are not the unique and decisive characteristics for representing human Also, due to the outdoor image property, the object feature information is unavoidably vague and inaccurate. In order to make an efficient decision from the information, we use a fuzzy rules base system ai an approximate reasoning method. The fuzzy rules, combining various object features, are able to describe the conditions for making an intelligent decision. The fuzzy rule base system is initially constructed by heuristic approach and then, trained and tasted with input/output data Experimental result are shown, demonstrating the validity of our system.

  • PDF

Intelligent Control of Mobile Robot Based-on Neural Network (뉴럴네트워크를 이용한 이동로봇의 지능제어)

  • 김홍래;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.207-212
    • /
    • 2004
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

A Study on Trend Impact Analysis Based of Adaptive Neuro-Fuzzy Inference System

  • Yong-Gil Kim;Kang-Yeon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.199-207
    • /
    • 2023
  • Trend Impact Analysis is a prominent hybrid method has been used in future studies with a modified surprise- free forecast. It considers experts' perceptions about how future events may change the surprise-free forecast. It is an advanced forecasting tool used in futures studies for identifying, understanding and analyzing the consequences of unprecedented events on future trends. In this paper, we propose an advanced mechanism to generate more justifiable estimates to the probability of occurrence of an unprecedented event as a function of time with different degrees of severity using adaptive neuro-fuzzy inference system (ANFIS). The key idea of the paper is to enhance the generic process of reasoning with fuzzy logic and neural network by adding the additional step of attributes simulation, as unprecedented events do not occur all of a sudden but rather their occurrence is affected by change in the values of a set of attributes. An ANFIS approach is used to identify the occurrence and severity of an event, depending on the values of its trigger attributes.

Fuzzy Neural System Modeling using Fuzzy Entropy (퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링)

  • 박인규
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.2
    • /
    • pp.201-208
    • /
    • 2000
  • In this paper We describe an algorithm which is devised for 4he partition o# the input space and the generation of fuzzy rules by the fuzzy entropy and tested with the time series prediction problem using Mackey-Glass chaotic time series. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rules base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. The Proposed algorithm has been naturally derived by means of the synergistic combination of the approximative approach and the descriptive approach. Each output of the rule's consequences has expressed with its connection weights in order to minimize the system parameters and reduce its complexities.

  • PDF

Direct Adaptive Control System for Path Tracking of Mobile Robot Based on Wavelet Fuzzy Neural Network (이동 로봇의 경로 추종을 위한 웨이블릿 퍼지 신경 회로망 기반 직접 적응 제어 시스템)

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2432-2434
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

  • PDF

Temperature Inference System by Rough-Neuro-Fuzzy Network

  • Il Hun jung;Park, Hae jin;Kang, Yun-Seok;Kim, Jae-In;Lee, Hong-Won;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.296-301
    • /
    • 1998
  • The Rough Set theory suggested by Pawlak in 1982 has been useful in AI, machine learning, knowledge acquisition, knowledge discovery from databases, expert system, inductive reasoning. etc. The main advantages of rough set are that it does not need any preliminary or additional information about data and reduce the superfluous informations. but it is a significant disadvantage in the real application that the inference result form is not the real control value but the divided disjoint interval attribute. In order to overcome this difficulty, we will propose approach in which Rough set theory and Neuro-fuzzy fusion are combined to obtain the optimal rule base from lots of input/output datum. These results are applied to the rule construction for infering the temperatures of refrigerator's specified points.

  • PDF

FMECA using Fault Tree Analysis (FTA) and Fuzzy Logic (결함수분석법과 퍼지논리를 이용한 FMECA 평가)

  • Kim, Dong-Jin;Shin, Jun-Seok;Kim, Hyung-Jun;Kim, Jin-O;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1529-1532
    • /
    • 2007
  • Failure Mode, Effects, and Criticality Analysis (FMECA) is an extension of FMEA which includes a criticality analysis. The criticality analysis is used to chart the probability of failure modes against the severity of their consequences. The result highlights failure modes with relatively high probability and severity of consequences, allowing remedial effort to be directed where it will produce the greatest value. However, there are several limitations. Measuring severity of failure consequences is subjective and linguistic. Since The result of FMECA only gives qualitative and quantitative informations, it should be re-analysed to prioritize critical units. Fuzzy set theory has been introduced by Lotfi A. Zadeh (1965). It has extended the classical set theory dramatically. Based on fuzzy set theory, fuzzy logic has been developed employing human reasoning process. IF-THEN fuzzy rule based assessment approach can model the expert's decision logic appropriately. Fault tree analysis (FTA) is one of most common fault modeling techniques. It is widely used in many fields practically. In this paper, a simple fault tree analysis is proposed to measure the severity of components. Fuzzy rule based assessment method interprets linguistic variables for determination of critical unit priorities. An rail-way transforming system is analysed to describe the proposed method.

  • PDF

Collision risk assessment based on the vulnerability of marine accidents using fuzzy logic

  • Hu, Yancai;Park, Gyei-Kark
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.541-551
    • /
    • 2020
  • Based on the trend, there have been numerous researches analysing the ship collision risk. However, in this scope, the navigational conditions and external environment are ignored or incompletely considered in training or/and real situation. It has been identified as a significant limitation in the navigational collision risk assessment. Therefore, a novel algorithm of the ship navigational collision risk solving system has been proposed based on basic collision risk and vulnerabilities of marine accidents. The vulnerability can increase the possibility of marine collision accidents. The factors of vulnerabilities including bad weather, tidal currents, accidents prone area, traffic congestion, operator fatigue and fishing boat operating area are involved in the fuzzy reasoning engines to evaluate the navigational conditions and environment. Fuzzy logic is employed to reason basic collision risk using Distance to Closest Point of Approach (DCPA) and Time of Closest Point of Approach (TCPA) and the degree of vulnerability in the specific coastal waterways. Analytical Hierarchy Process (AHP) method is used to obtain the integration of vulnerabilities. In this paper, vulnerability factors have been proposed to improve the collision risk assessment especially for non-SOLAS ships such as coastal operating ships and fishing vessels in practice. Simulation is implemented to validate the practicability of the designed navigational collision risk solving system.

Safety of Workers in Indian Mines: Study, Analysis, and Prediction

  • Verma, Shikha;Chaudhari, Sharad
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.267-275
    • /
    • 2017
  • Background: The mining industry is known worldwide for its highly risky and hazardous working environment. Technological advancement in ore extraction techniques for proliferation of production levels has caused further concern for safety in this industry. Research so far in the area of safety has revealed that the majority of incidents in hazardous industry take place because of human error, the control of which would enhance safety levels in working sites to a considerable extent. Methods: The present work focuses upon the analysis of human factors such as unsafe acts, preconditions for unsafe acts, unsafe leadership, and organizational influences. A modified human factor analysis and classification system (HFACS) was adopted and an accident predictive fuzzy reasoning approach (FRA)-based system was developed to predict the likelihood of accidents for manganese mines in India, using analysis of factors such as age, experience of worker, shift of work, etc. Results: The outcome of the analysis indicated that skill-based errors are most critical and require immediate attention for mitigation. The FRA-based accident prediction system developed gives an outcome as an indicative risk score associated with the identified accident-prone situation, based upon which a suitable plan for mitigation can be developed. Conclusion: Unsafe acts of the worker are the most critical human factors identified to be controlled on priority basis. A significant association of factors (namely age, experience of the worker, and shift of work) with unsafe acts performed by the operator is identified based upon which the FRA-based accident prediction model is proposed.

On the Minimax Disparity Obtaining OWA Operator Weights

  • Hong, Dug-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.273-278
    • /
    • 2009
  • The determination of the associated weights in the theory of ordered weighted averaging (OWA) operators is one of the important issue. Recently, Wang and Parkan [Information Sciences 175 (2005) 20-29] proposed a minimax disparity approach for obtaining OWA operator weights and the approach is based on the solution of a linear program (LP) model for a given degree of orness. Recently, Liu [International Journal of Approximate Reasoning, accepted] showed that the minimum variance OWA problem of Fuller and Majlender [Fuzzy Sets and Systems 136 (2003) 203-215] and the minimax disparity OWA problem of Wang and Parkan always produce the same weight vector using the dual theory of linear programming. In this paper, we give an improved proof of the minimax disparity problem of Wang and Parkan while Liu's method is rather complicated. Our method gives the exact optimum solution of OWA operator weights for all levels of orness, $0\leq\alpha\leq1$, whose values are piecewise linear and continuous functions of $\alpha$.