• 제목/요약/키워드: fuzzy parameters

검색결과 1,236건 처리시간 0.032초

GA-fuzzy $P^2ID$ Control System for Flexible-joint Robot Arm

  • Tangcharoensuk, Teranun;Purahong, Boonchana;Sooraksa, Pitikhate
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.969-972
    • /
    • 2005
  • This paper presents a GA-fuzzy $P^2ID$ control system for the flexible-joint robot arm. This controller is designed based on the parameter adjustment using fuzzy logic and genetic algorithms. According to the simulations, the better performance has been achieved acquired that the robot moved smoothly and met its required objectives. The results of comparison between 8 parameters and 10 parameters can be conclusion that the 10 parameters have setting time little than 8 parameters. In usability can be use 8 or 10 parameters these one.

  • PDF

Stability Analysis and Proposal of a Simple Form of a Fuzzy PID Controller

  • Lee, Byung-Kyul;Kim, In-Hwan;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1299-1312
    • /
    • 2004
  • This paper suggests the simple form of a fuzzy PID controller and describes the design principle, tracking performance, stability analysis and changes of parameters of a suggested fuzzy PID controller. A fuzzy PID controller is derived from the design procedure of fuzzy control. It is well known that a fuzzy PID controller has a simple structure of the conventional PID controller but posses its self-tuning control capability and the gains of a fuzzy PID controller become nonlinear functions of the inputs. Nonlinear calculation during fuzzification, defuzzification and the fuzzy inference require more time in computation. To increase the applicability of a fuzzy PID controller to digital computer, a simple form of a fuzzy PID controller is introduced by the backward difference mapping and the analysis of the fuzzy input space. To guarantee the BIBO stability of a suggested fuzzy PID controller, ‘small gain theorem’ which proves the BIBO stability of a fuzzy PI and a fuzzy PD controller is used. After a detailed stability analysis using ‘small gain theorem’, from which a simple and practical method to decide the parameters of a fuzzy PID controller is derived. Through the computer simulations for the linear and nonlinear plants, the performance of a suggested fuzzy PID controller will be assured and the variation of the gains of a fuzzy PID controller will be investigated.

퍼지 추정기에의한 동적 시스템의 상태 추정에 관한 연구 (A Study on the State Estimaion of Dynamic system using Fuzzy Estimator)

  • 문주영;박승현;이상배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.350-355
    • /
    • 1997
  • The problem of mathematical model for an unknown system by measureing its input-output data pairs is generally referred to as state estimates. The state estimation problem is often of importance in its own right since we may want to know the value of the states. For instance, in navigation, we may take noisy positional fixes using satelite or radar navigation, and the estimator can use these measurements to provide accurate estimates of current position, hedaing, and velocity. And the state estimates can also be used for control purposes. Then it is very important to know the state of plant. In this paper, the theory of the minimization of a loss function was used to design the fuzzy system. Here, the used teory is Least Square Esimation method. This parametrization has the Linear in the parameters charcteristic that allows standard parameter estimation technique to be used to estimate the parameters of the fuzzy system. The combination of the fuzzy system and the estimation m thod then performs as a nonlinear estimator. If several fuzzy label are defined for the input variables at the antecedent part, the fuzzy system then behaves as a collection of nonlinear estimators where different regions of rules have different parameters. In simulation results, the fuzzy model controlled a difference in the structure between the actual plant and the fuzzy estimator. It is also proved that the fuzzy system is equivalent to its transformed system. therefore we was able to get the state space equation of system with the estimated paramater.

  • PDF

플립 칩 BGA 최종 검사를 위한 최대퍼지엔트로피 기반의 다중임계값 선정 알고리즘 (A Multiple Threshold Selection Algorithm Based on Maximum Fuzzy Entropy for the Final Inspection of Flip Chip BGA)

  • 김경범
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.202-209
    • /
    • 2004
  • Quality control is essential to the final product in BGA-type PCB fabrication. So, many automatic vision systems have been developed to achieve speedy, low cost and high quality inspection. A multiple threshold selection algorithm is a very important technique for machine vision based inspection. In this paper, an inspected image is modeled by using fuzzy sets and then the parameters of specified membership functions are estimated to be in maximum fuzzy entropy with the probability of the fuzzy sets, using the exhausted search method. Fuzzy c-partitions with the estimated parameters are automatically generated, and then multiple thresholds are selected as the crossover points of the fuzzy sets that form the estimated fuzzy partitions. Several experiments related to flip chip BGA images show that the proposed algorithm outperforms previous ones using both entropy and variance, and also can be successfully applied to AVI systems.

Nonlinear Characteristics of Fuzzy Scatter Partition-Based Fuzzy Inference System

  • Park, Keon-Jun;Huang, Wei;Yu, C.;Kim, Yong K.
    • International journal of advanced smart convergence
    • /
    • 제2권1호
    • /
    • pp.12-17
    • /
    • 2013
  • This paper introduces the fuzzy scatter partition-based fuzzy inference system to construct the model for nonlinear process to analyze nonlinear characteristics. The fuzzy rules of fuzzy inference systems are generated by partitioning the input space in the scatter form using Fuzzy C-Means (FCM) clustering algorithm. The premise parameters of the rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the parameters of the consequence part are estimated by least square errors. The proposed model is evaluated with the performance using the data widely used in nonlinear process. Finally, this paper shows that the proposed model has the good result for high-dimension nonlinear process.

비선형 시스템에 대한 동적인 규칙 삽입을 이용한 퍼지 관측기 설계 (Design of Fuzzy Observer for Nonlinear System using Dynamic Rule Insertion)

  • 서호준;박장현;서삼준;김동식;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2308-2310
    • /
    • 2001
  • In the adaptive fuzzy sliding mode control, from a set of a fuzzy IF-THEN rules adaptive fuzzy sliding mode control whose parameters are adjusted on-line according to some adaptation laws is constructed for the purpose of controlling the plant to track a desired trajectory. Most of the research works in nonlinear controller design using fuzzy systems consider the affine system with fixed grid-rule structure based on system state availability. The fixed grid-rule structure makes the order of the controller big unnecessarily, hence the on-line fuzzy rule structure and fuzzy observer based adaptive fuzzy sliding mode controller is proposed to solve system state availability problems. Therefore, adaptive laws of fuzzy parameters for state observer and fuzzy rule structure are established implying whole system stability in the sense of Lyapunov.

  • PDF

진화론적 데이터 입자에 기반한 퍼지 집합 기반 퍼지 추론 시스템의 최적화 (Optimization of Fuzzy Set-based Fuzzy Inference Systems Based on Evolutionary Data Granulation)

  • 박건준;이동윤;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.343-345
    • /
    • 2004
  • We propose a new category of fuzzy set-based fuzzy inference systems based on data granulation related to fuzzy space division for each variables. Data granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

APPLICATION OF GENETIC-BASED FUZZY INFERENCE TO FUZZY CONTROL

  • Park, Daihee;Kandel, Abraham;Langholz, Gideon
    • 한국지능시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.3-33
    • /
    • 1992
  • The successful application of fuzzy reasoning models to fuzzy control systems depends on a number of parameters, such as fuzzy membership functions, that are usually decided upon subjectively. It is shown ill this paper that the performance of fuzzy control systems call be improved if the fuzzy reasoning model is supplemented by a genetic-based learning mechanism. The genetic algorithm enables us to generate all optimal set of parameters for the fuzzy reasoning model based either on their initial subjective selection or on a random selection. It is shown that if knowledge of the domain is available, it is exploited by the genetic algorithm leading to an even better performance of the fuzzy controller.

  • PDF

MULTI-OBJECTIVES FUZZY MODELS FOR DESIGNING 3D TRAJECTORY IN HORIZONTAL WELLS

  • Qian, Weiyi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.265-275
    • /
    • 2004
  • In this paper, multi-objective models for designing 3D trajectory of horizontal wells are developed in a fuzzy environment. Here, the objectives of minimizing the length of the trajectory and the error of entry target point are fuzzy in nature. Some parameters, such as initial value, end value, lower bound and upper bound of the curvature radius, tool-face angle and the arc length of each curve section, are also assumed to be vague and imprecise. The impreciseness in the above objectives have been expressed by fuzzy linear membership functions and that in the above parameters by triangular fuzzy numbers. Models have been solved by the fuzzy non-linear programming method based on Zimmermann [1] and Lee and Li [2]. Models are applied to practical design of the horizontal wells. Numerical results illustrate the accuracy and efficiency of the fuzzy models.

비선형 퍼지 PID 제어기의 성능 개선에 관한 연구 (A Study on the Performance Improvement of a Nonlinear Fuzzy PID Controller)

  • 김인환;이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.852-861
    • /
    • 2003
  • In this paper, in order to improve the disadvantages of the fixed design-parameter fuzzy PID controller. a new fuzzy PID controller named a variable design-parameter fuzzy PID controller is suggested. The main characteristic of the suggested controller is to adjust design-parameters of the controller by comparing magnitudes between fuzzy controller inputs at each sampling time when controller inputs are measured. As a result. all fuzzy input partitioned spaces converge within a time-varying normalization scale. and the resultant PID control action can always be applied precisely regardless of operating input magnitudes. In order to verify the effectiveness of the suggested controller. several a computer simulations for a nonlinear system are executed and the control parameters of the variable design-parameter fuzzy PID controller are throughly analyzed.