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Abstract 
 

This paper introduces the fuzzy scatter partition-based fuzzy inference system to construct the model for nonlinear process to analyze 

nonlinear characteristics. The fuzzy rules of fuzzy inference systems are generated by partitioning the input space in the scatter form 

using Fuzzy C-Means (FCM) clustering algorithm. The premise parameters of the rules are determined by membership matrix by 

means of FCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the 

parameters of the consequence part are estimated by least square errors. The proposed model is evaluated with the performance using 

the data widely used in nonlinear process. Finally, this paper shows that the proposed model has the good result for high-dimension 

nonlinear process.  

 

Key words: Fuzzy Scatter Partition, Fuzzy Inference Systems, Fuzzy C-Means Clustering Algorithm, Rule Generation, Nonlinear 

Process. 

 

1. INTRODUCTION 
 

Fuzzy sets and fuzzy modeling proposed by Zadeh [1] 

have been studied to deal with complex, ill-defined, and 

uncertain systems in many other avenues [2, 3, 4]. 

Linguistic modeling [5] and fuzzy relation equation-based 

approach [6] were proposed as primordial identification 

methods for fuzzy models. The general class of 

Sugeno-Takagi models [7] gave rise to more sophisticated 

rule-based systems. In fuzzy modeling, the structure and 

parameter identification are usually concerned. The 

designers find it difficult to develop adequate fuzzy rules 

and membership functions to reflect the essence of the data. 

The generation of fuzzy rules has the problem that the 

number of fuzzy rules exponentially increases.  

In this paper, we introduce a fuzzy scatter partition-based 

fuzzy inference system. Fuzzy partition of input space 

realized with FCM clustering [8] help determine the fuzzy 

rules of fuzzy model. The premise part of the rules is 

realized with the aid of the scatter partition of input space 

generated by FCM clustering algorithms. The number of the 

partition of input space equals the number of clusters and 

the individual partitioned spaces describe the rules. The 

consequence part of the rules is represented by polynomial 

functions. For simulating nonlinear process, the proposed 

model is evaluated with numerical experimentation. Finally, 

this paper shows that the proposed model has the good 

result for high-dimension nonlinear process. 

 

2. DESIGN OF FUZZY SCATTER 

PARTITION-BASED FUZZY INFERENCE SYSTEM 
 

2.1. Premise Identification 

The premise part of the FIS is developed by means of the 
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fuzzy c-means clustering algorithm [8]. This algorithm 

divides the input space by the clusters and each partitioned 

local space represents the fuzzy rules. Therefore, the 

number of clusters is equal to the number of rules. This 

algorithm is aimed at the formation of ‘c’ clusters (relations) 

in R
n
.  

Consider the set X, which consists of N data points 

treated as vectors located in some n-dimensional Euclidean 

space. In clustering we assign patterns xp∈X into c clusters, 
which are represented by its prototypes vi∈R

n
. The 

assignment to individual clusters is expressed in terms of 

the partition matrix U = [uip] where 
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The objective function Q guiding the clustering is 

expressed as a sum of the distances of individual data from 

the prototypes v1, v2, …, and vc, 
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Here ⋅ denotes the Euclidean distance; ‘m’ stands for a 

fuzzification coefficient, mi>1.0. The resulting partition 

matrix is denoted by U = [uip].  

The minimization of Q is realized through successive 

iterations by adjusting both the prototypes and entries of the 

partition matrix, that is min Q(U, v1, v2, …, vc). The 

corresponding formulas used in an iterative fashion read as 

follows. 
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Figure 1 shows the membership matrix according to 

fuzzification coefficient. The shape of membership grade is 

affected by the values of the fuzzification coefficient. This 

means that the shape of membership grade becomes sharper 

as the value of coefficient is larger. 

The resulting partitioned local spaces by means of FCM 

clustering algorithm represent the fuzzy rules of system. 

Figure 2 visualizes the example of the fuzzy partitioned 

spaces of input space with five clusters. 

 

(a) m = 1.5 

 

 (b) m = 2.0 

 

(c) m = 2.5 

 

 (d) m = 3.0 

Fig. 1. Membership matrix according to fuzzification 

coefficient. 
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(a) Partitioned local spaces 

 

(b) Membership grade 

Fig. 2. Fuzzy scatter partition of input space. 

 

2.2 Consequence Identification 

The identification of the conclusion parts of the rules 

deals with a selection of their structure that is followed by 

the determination of the respective parameters of the local 

functions occurring there. The conclusion is expressed as 

follows. 
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Type 1 (Simplified Inference):  
 

0jaf = .    (6) 

 

Type 2 (Linear Inference):  
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Type 3 (Quadratic Inference):  
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Type 4 (Modified Quadratic Inference):  
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Where
jR is the j-th rule, xk represents the input variables, 

Fj is a memberships obtained using FCM clustering 

algorithm, a’s are coefficient of polynomial function, z is 

the number of combinations of input variables. 

The calculations of the numeric output of the model, 

based on the activation (matching) levels of the rules there, 

are carried out in the well-known format 
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Here, as the normalized value of wjp, we use an 

abbreviated notation to describe an activation level 
jpŵ , 

which values are determined by the partition matrix U; 

 

ipjp uw = .    (11) 

 

Therefore, the inferred output value y* can be expressed 

as 
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If the input variables of the premise and parameters are 

given in consequence parameter identification, the optimal 

consequence parameters that minimize the assumed 

performance index can be determined.  
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The minimal value produced by the least-squares method 

is governed by the following expression: 
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3. EXPERIMENTAL STUDIES 
 

We discuss numerical example in order to evaluate the 

advantages and the effectiveness of the proposed approach. 

This time series data (296 input-output pairs) coming from 

the gas furnace nonlinear process has been intensively 

studied in the previous literature [9]. The delayed terms of 

methane gas flow rate u(t) and carbon dioxide density y(t) 
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are used as input variables organized in a vector format as 

[u(t-3), u(t-2), u(t-1), y(t-3), y(t-2), y(t-1)]. y(t) is the output 

variable. The first part of the data set (consisting of 148 

pairs) was used for training purposes. The remaining part of 

the series serves as a testing data set. We consider the MSE 

as a performance index. 

We construct the model for a two-dimensional system by 

configuring 2-input 1-output system using u(t-3) and y(t-1) 

as inputs and six-dimensional system using all inputs. 

Table 1 and Table 2 summarize the performance index 

for training and testing data by setting the number of 

clusters and inference type. Here, PI and E_PI stand for the 

performance index for the training data set and the testing 

data set, respectively. 

From the Table 1 and Table 2, we selected the best model 

with five rules (clusters) with quadratic inference that 

exhibits PI = 0.015 and E_PI = 0.299 for two-dimension 

system and five rules (clusters) with linear inference that 

exhibits PI = 0.012 and E_PI = 0.181 for six-dimension 

system. 

 

Table 1. Performance of the proposed model (Two-dimension) 

No. of 

Clusters 
Type PI E_PI 

2 

Type 1 2.268 2.418 

Type 2 0.022 0.338 

Type 3 0.021 0.331 

Type 4 0.021 0.332 

3 

Type 1 1.018 1.473 

Type 2 0.021 0.347 

Type 3 0.020 0.320 

Type 4 0.021 0.340 

5 

Type 1 0.664 1.232 

Type 2 0.018 0.316 

Type 3 0.015 0.299 

Type 4 0.016 0.299 

10 

Type 1 0.491 0.970 

Type 2 0.015 0.315 

Type 3 0.013 0.339 

Type 4 0.014 0.312 

 

Table 2. Performance of the proposed model (Six-dimension) 

No. of 

Clusters 
Type PI E_PI 

2 

Type 1 2.192 3.190 

Type 2 0.015 0.188 

Type 3 0.008 0.206 

Type 4 0.009 0.248 

3 Type 1 1.452 2.246 

Type 2 0.014 0.203 

Type 3 0.006 0.422 

Type 4 0.005 0.319 

5 

Type 1 1.085 2.243 

Type 2 0.012 0.181 

Type 3 0.001 6.191 

Type 4 1.707E-16 1332.582 

10 

Type 1 0.901 2.131 

Type 2 0.008 0.241 

Type 3 1.345E-19 6.752 

Type 4 2.355E-18 77.600 

 

Fig.3 shows fuzzy-partitioned input spaces and membership 

matrix using FCM clustering algorithm in two-dimensional 

input space for the selected model.  

 

(a) Partitioned input spaces 

 

(b) membership matrix 

Fig. 3. Partitioned input spaces and membership matrix using 

FCM clustering algorithm (5 clusters) 

 
Figure 4 and Figure 5 depict the original and model outputs 

of training and testing data for the selected model. This figure 

shows that the model outputs are approximately the same for 

original output. 

Figure 6 and Figure 7 show the resulting predicting errors 

for training and testing data for the selected model. The 

differences between predicting errors for training and testing 

data in six-dimension system have more small values. 
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(a) Training data 

 

 

(b) Testing data 

 

Fig. 4. Model outputs (5 clusters, quadratic inference) for 

two-dimension system. 

 

 

(a) Training data 

 

 

(b) Testing data 

 

Fig. 5. Model outputs (5 clusters, linear inference) for 

six-dimension system. 

 

(a) Training data 

 

 

(b) Testing data 

 

Fig. 6. Predicting errors (5 clusters, quadratic inference) for 

two-dimension system. 

 

 

(a) Training data 

 

 

(b) Testing data 

 

Fig. 7. Predicting errors (5 clusters, linear inference) for six-dimension 

system. 
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4. CONCLUSION 
 

In this paper, we introduced a fuzzy scatter 

partition-based fuzzy inference system to analysis the 

nonlinear characteristics. In order to generate the rules of 

the system for nonlinear process, the input spaces of the 

proposed model were divided as the scatter form using FCM 

clustering algorithm. By this method, we could alleviate the 

problem of the curse of dimensionality and design the FIS 

that is compact and simple.  

From the results, we were able to design preferred model 

using a very small number of rules in a high dimensional 

nonlinear systems. Through the use of a performance index, 

we were able to achieve a balance between the 

approximation and generalization abilities of the resulting 

model. Finally, this approach would find potential 

application to system modeling in many fields. 
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