• Title/Summary/Keyword: fuzzy neural network model

Search Result 415, Processing Time 0.023 seconds

On Designing an Adaptive Neural-Fuzzy Control System (적응 뉴럴-퍼지 제어시스템의 설계에 관한 연구)

  • 김성현;김용호;최영길;심귀보;전홍태
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.4
    • /
    • pp.37-43
    • /
    • 1993
  • As an approach to develope the intelligent control scheme, this paper will propose an adaptive neural-fuzzy control scheme. The proposed neural-fuzzy control system, which consists of the Fuzzy-Neural Controller(FNC) and Model Neural Network(MNN), has two important characteristics of adaptation and learning. The error back propagation algorithm has been adopted as a learning technique.

  • PDF

Collapse moment estimation for wall-thinned pipe bends and elbows using deep fuzzy neural networks

  • Yun, So Hun;Koo, Young Do;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2678-2685
    • /
    • 2020
  • The pipe bends and elbows in nuclear power plants (NPPs) are vulnerable to degradation mechanisms and can cause wall-thinning defects. As it is difficult to detect both the defects generated inside the wall-thinned pipes and the preliminary signs, the wall-thinning defects should be accurately estimated to maintain the integrity of NPPs. This paper proposes a deep fuzzy neural network (DFNN) method and estimates the collapse moment of wall-thinned pipe bends and elbows. The proposed model has a simplified structure in which the fuzzy neural network module is repeatedly connected, and it is optimized using the least squares method and genetic algorithm. Numerical data obtained through simulations on the pipe bends and elbows with extrados, intrados, and crown defects were applied to the DFNN model to estimate the collapse moment. The acquired databases were divided into training, optimization, and test datasets and used to train and verify the estimation model. Consequently, the relative root mean square (RMS) errors of the estimated collapse moment at all the defect locations were within 0.25% for the test data. Such a low RMS error indicates that the DFNN model is accurate in estimating the collapse moment for wall-thinned pipe bends and elbows.

Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks

  • Park, Ji Hun;An, Ye Ji;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2547-2555
    • /
    • 2021
  • The frequency of reactor coolant leakage is expected to increase over the lifetime of a nuclear power plant owing to degradation mechanisms, such as flow-acceleration corrosion and stress corrosion cracking. When loss of coolant accidents (LOCAs) occur, several parameters change rapidly depending on the size and location of the cracks. In this study, leak flow during LOCAs is predicted using a deep fuzzy neural network (DFNN) model. The DFNN model is based on fuzzy neural network (FNN) modules and has a structure where the FNN modules are sequentially connected. Because the DFNN model is based on the FNN modules, the performance factors are the number of FNN modules and the parameters of the FNN module. These parameters are determined by a least-squares method combined with a genetic algorithm; the number of FNN modules is determined automatically by cross checking a fitness function using the verification dataset output to prevent an overfitting problem. To acquire the data of LOCAs, an optimized power reactor-1000 was simulated using a modular accident analysis program code. The predicted results of the DFNN model are found to be superior to those predicted in previous works. The leak flow prediction results obtained in this study will be useful to check the core integrity in nuclear power plant during LOCAs. This information is also expected to reduce the workload of the operators.

Modeling & simulator design for A.S.P using FNN (FNN을 이용한 활성오니 공정 모델링 및 시뮬레이터 설계)

  • 최진혁;박종진;남의석;오성권;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.412-416
    • /
    • 1993
  • In this paper, fuzzy-neural network is proposed to identify the Activated Sludge Process(A.S.P) in sewage treatment such as "IF-THEN" type fuzzy rules and using various learning methods and improved complex method, the performance index of the identified model is improved. The proposed FNN has the neural network structure of which the connection weights have particular meanings for obtaining fuzzy inference rules and for tuning membership functions. And based on the identified model, graphic simulator which can analize nonlinear characteristics of A.S.P and generate control strategy for A.S.P is being developed.developed.

  • PDF

Genetically Optimized Fuzzy Polynomial Neural Networks and Its Application to Multi-variable Software Process (유전론적 최적 퍼지 다항식 뉴럴네트워크와 다변수 소프트웨어 공정으로의 응용)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.152-154
    • /
    • 2005
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed genetic algorithms-based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

  • PDF

Fuzzy polynomial neural network model and its application to wastewater treatment system

  • Oh, Sung-Kwun;Choi, Jae-Ho;Ahn, Tae-Chon;Hwang, Hyung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.185-188
    • /
    • 1996
  • In this paper, a fuzzy PNN algorithm is proposed to estimate the structure and parameters of fuzzy model, using the PNN based on GMDH algorithm. New algorithm uses PNN algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the leastsquare method in order to identify the optimal consequence parameters. Both time series data for gas furnace and data for wastewater treatment process are used for the purpose of evaluating the performance of the fuzzy PNN. The results show that the proposed technique can produce the fuzzy model with higher accuracy than other works achieved previously.

  • PDF

The Design of Pattern Classification based on Fuzzy Combined Polynomial Neural Network (퍼지 결합 다항식 뉴럴 네트워크 기반 패턴 분류기 설계)

  • Rho, Seok-Beom;Jang, Kyung-Won;Ahn, Tae-Chon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.534-540
    • /
    • 2014
  • In this paper, we propose a fuzzy combined Polynomial Neural Network(PNN) for pattern classification. The fuzzy combined PNN comes from the generic TSK fuzzy model with several linear polynomial as the consequent part and is the expanded version of the fuzzy model. The proposed pattern classifier has the polynomial neural networks as the consequent part, instead of the general linear polynomial. PNNs are implemented by stacking the simple polynomials dynamically. To implement one layer of PNNs, the various types of simple polynomials are used so that PNNs have flexibility and versatility. Although the structural complexity of the implemented PNNs is high, the PNNs become a high order-multi input polynomial finally. To estimate the coefficients of a polynomial neuron, The weighted linear discriminant analysis. The output of fuzzy rule system with PNNs as the consequent part is the linear combination of the output of several PNNs. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

The emotional evaluation of color pattern based on information fusion (정보융합 기법을 이용한 칼라 패턴의 감성 평가)

  • 김성환;엄경배;이준환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.23-27
    • /
    • 2000
  • In this paper, we propose an emotional evaluation model based on information fusion. This model can transform the physical features of a color pattern to the emotional features. Our proposed model consists of the fuzzy logic system and neural network model. The evaluation values produced by them were fused. The model shows comparable performances to the neural network and fuzzy logic system for the approximation of the nonlinear transforms. We believe the evaluated results of a color pattern can be used to the emotion-based color image retrievals.

  • PDF

IAFC(Integrated Adaptive Fuzzy Clustering)Model Using Supervised Learning Rule for Pattern Recognition (패턴 인식을 위한 감독학습을 사용한 IAFC( Integrated Adaptive Fuzzy Clustering)모델)

  • 김용수;김남진;이재연;지수영;조영조;이세열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.153-157
    • /
    • 2004
  • 본 논문은 패턴인식을 위해 사용할 수 있는 감독학습을 이용한 supervised IAFC neural network 1과 supervised IAFC neural network 2를 제안하였다 Supervised IAFC neural network 1과 supervised IAFC neural network 2는 LVQ(Learning Vector Quantization)를 퍼지화한 새로운 퍼지 학습법칙을 사용하고 있다. 이 새로운 퍼지 학습 법칙은 기존의 학습률 대신에 퍼지화된 학습률을 사용하고 있는데, 이 퍼지화된 학습률은 조건 확률을 퍼지화 한 것에 근간을 두고 있다. Supervised IAFC neural network 1과 supervised IAFC neural network 2의 성능과 오류역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, 실험결과 supervised IAFC neural network 2 의 성능이 오류역전파 신경회로망의 성능보다 우수함이 입증되었다.

  • PDF

A New Design of Fuzzy Neural Networks Using Data Information (데이터 정보를 이용한 퍼지 뉴럴 네트워크의 새로운 설계)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.273-275
    • /
    • 2006
  • In this paper, we introduce a new design of fuzzy neural networks using input-output data information of target system. The proposed fuzzy neural networks is constructed by input-output data information and used the center of data distance by HCM clustering to obtain the characteristics of data. A membership function is defined by HCM clustering and is applied input-output dat included each rule to conclusion polynomial functions. We use triangular membership functions and simplified fuzzy inference, linear fuzzy inference, and modified quadratic fuzzy inference in conclusion. In the networks learning, back propagation algorithm of network is used to update the parameters of the network. The proposed model is evaluated with benchmark data.

  • PDF