• Title/Summary/Keyword: fuzzy models

Search Result 656, Processing Time 0.031 seconds

Hybrid Neural Classifier Combined with H-ART2 and F-LVQ for Face Recognition

  • Kim, Do-Hyeon;Cha, Eui-Young;Kim, Kwang-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1287-1292
    • /
    • 2005
  • This paper presents an effective pattern classification model by designing an artificial neural network based pattern classifiers for face recognition. First, a RGB image inputted from a frame grabber is converted into a HSV image which is similar to the human beings' vision system. Then, the coarse facial region is extracted using the hue(H) and saturation(S) components except intensity(V) component which is sensitive to the environmental illumination. Next, the fine facial region extraction process is performed by matching with the edge and gray based templates. To make a light-invariant and qualified facial image, histogram equalization and intensity compensation processing using illumination plane are performed. The finally extracted and enhanced facial images are used for training the pattern classification models. The proposed H-ART2 model which has the hierarchical ART2 layers and F-LVQ model which is optimized by fuzzy membership make it possible to classify facial patterns by optimizing relations of clusters and searching clustered reference patterns effectively. Experimental results show that the proposed face recognition system is as good as the SVM model which is famous for face recognition field in recognition rate and even better in classification speed. Moreover high recognition rate could be acquired by combining the proposed neural classification models.

  • PDF

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

Load Frequency Control using Parameter Self-Tuning fuzzy Controller (파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어)

  • 탁한호;추연규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.50-59
    • /
    • 1998
  • This paper presents stabilization and adaptive control of flexible single link robot manipulator system by self-recurrent neural networks that is one of the neural networks and is effective in nonlinear control. The architecture of neural networks is a modified model of self-recurrent structure which has a hidden layer. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. When a flexible manipulator is rotated by a motor through the fixed end, transverse vibration may occur. The motor toroque should be controlled in such a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipuators so that it is arresed as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large changes in configuration common to robotic tasks requires dynamic models that describe both the rigid body motions, as well as the flexural vibrations. Therefore, a dynamic models for a flexible single link robot manipulator is derived, and then a comparative analysis was made with linear controller through an simulation and experiment. The results are proesented to illustrate thd advantages and imporved performance of the proposed adaptive control ove the conventional linear controller.

  • PDF

MONITORING SEVERE ACCIDENTS USING AI TECHNIQUES

  • No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.393-404
    • /
    • 2012
  • After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

A Hierarchical Clustering Method Based on SVM for Real-time Gas Mixture Classification

  • Kim, Guk-Hee;Kim, Young-Wung;Lee, Sang-Jin;Jeon, Gi-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.716-721
    • /
    • 2010
  • In this work we address the use of support vector machine (SVM) in the multi-class gas classification system. The objective is to classify single gases and their mixture with a semiconductor-type electronic nose. The SVM has some typical multi-class classification models; One vs. One (OVO) and One vs. All (OVA). However, studies on those models show weaknesses on calculation time, decision time and the reject region. We propose a hierarchical clustering method (HCM) based on the SVM for real-time gas mixture classification. Experimental results show that the proposed method has better performance than the typical multi-class systems based on the SVM, and that the proposed method can classify single gases and their mixture easily and fast in the embedded system compared with BP-MLP and Fuzzy ARTMAP.

Data-Driven Approaches for Evaluating Countries in the International Construction Market

  • Lee, Kang-Wook;Han, Seung H.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.496-500
    • /
    • 2015
  • International construction projects are inherently more risky than domestic projects with multi-dimensional uncertainties that require complementary risk management at both the country and project levels. However, despite a growing need for systematic country evaluations, most studies have focused on project-level decisions and lack country-based approaches for firms in the construction industry. Accordingly, this study suggests data-driven approaches for evaluating countries using two quantitative models. The first is a two-stage country segmentation model that not only screens negative countries based on country attractiveness (macro-segmentation) but also identifies promising countries based on the level of past project performance in a given country (micro-segmentation). The second is a multi-criteria country segmentation model that combines a firm's business objective with the country evaluation process based on Kraljic's matrix and fuzzy preference relations (FPR). These models utilize not only secondary data from internationally reputable institutions but also performance data on Korean firms from 1990 to 2014 to evaluate 29 countries. The proposed approaches enable firms to enhance their decision-making capacity for evaluating and selecting countries at the early stage of corporate strategy development.

  • PDF

Evaluation of Robust Performance of Fuzzy Supervisory Control Technique (퍼지관리제어기법의 강인성능평가)

  • Ok, Seung-Yong;Park, Kwan-Soon;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.41-52
    • /
    • 2005
  • Using the variable control gain scheme on the basis of fuzzy-based decision-making process, Fuzzy supervisory control (FSC) technique exhibits better control performance than linear control technique with one static control gain. This paper demonstrates the effectiveness of the FSC technique by evaluating the robust performance of the FSC technique under the presence of uncertainties in the models and the excitations. Robust performance of the FSC system is compared with that of optimally designed LQG control system for the benchmark cable-stayed bridge presented by Dyke et al. Parameter studies on the robust performance evaluation are carried out by varying the stiffness of the bridge model as well as the magnitudes of several earthquakes with different frequency contents. From the comparative study of two control systems, FSC system shows the enhanced control performance against various magnitudes of several earthquakes while maintaining lower level of power required for controlling the bridge response. Especially, FSC system clearly guarantees the improved robust performance of the control system with stable reduction effects on the seismic responses and slight increases in total power and stroke for the control system, while LQG control system exhibits poor robust performance.

Household Types and Changes of Work-Family Time Allocation - Adapting Fuzzy-set Ideal Type Analysis - (일-가족 시간배분에 따른 가구유형과 변화 - 퍼지셋 이상형 분석의 적용 -)

  • Kim, Jin-Wook;Choi, Young-Jun
    • Korean Journal of Social Welfare
    • /
    • v.64 no.2
    • /
    • pp.31-54
    • /
    • 2012
  • Along with increasing mothers' employment, work-family reconciliation has been recognised as a key policy agenda in contemporary welfare states. Although various policy instruments have been introduced and expanded in recent years, the problem of time allocation within couples still remains as a fundamental issue, which has been largely underresearched at a micro perspective. In this context, this study aims to identify dominant types of work-family time allocation within married couple, and to apply these types to the Korean case using the fuzzy-set ideal type analysis. Further, a series of multiple regression analyses will be implemented to find factors affecting each ideal type of work-family time allocation. The 1999 and 2009 Korea Time Use Survey datasets will be adopted for the analyses. Married couples are selected as samples only when men work 40 hours or more per week and they have at least one pre-school child. Empirical analyses cover three parts. First of all, four ideal types on work-family time allocation are classified by intersecting two core variables - the ratio of men's (paid) working and family (caring time plus domestic work) time to total working and family time. In this research, the four types will be labelled the traditional male breadwinner model (TM, high working and low family time), the dual burden model (DB, shared working but low family time), the family-friendly male breadwinner model (FM, high working but shared family time), and the adaptive partnership model (AP, shared working and shared family time). By comparing the composition of the four ideal types in 1999 and 2009, it will examine the trend of work-family time allocation in Korea. In addition, multiple regressions will be useful for investigating which characteristics contribute to the different degree of each fuzzy ideal score in the four models. Finally, policy implications and further research agenda will be discussed.

  • PDF

Prediction of rock slope failure using multiple ML algorithms

  • Bowen Liu;Zhenwei Wang;Sabih Hashim Muhodir;Abed Alanazi;Shtwai Alsubai;Abdullah Alqahtani
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.489-509
    • /
    • 2024
  • Slope stability analysis and prediction are of critical importance to geotechnical engineers, given the severe consequences associated with slope failure. This research endeavors to forecast the factor of safety (FOS) for slopes through the implementation of six distinct ML techniques, including back propagation neural networks (BPNN), feed-forward neural networks (FFNN), Takagi-Sugeno fuzzy system (TSF), gene expression programming (GEP), and least-square support vector machine (Ls-SVM). 344 slope cases were analyzed, incorporating a variety of geometric and shear strength parameters measured through the PLAXIS software alongside several loss functions to assess the models' performance. The findings demonstrated that all models produced satisfactory results, with BPNN and GEP models proving to be the most precise, achieving an R2 of 0.86 each and MAE and MAPE rates of 0.00012 and 0.00002 and 0.005 and 0.004, respectively. A Pearson correlation and residuals statistical analysis were carried out to examine the importance of each factor in the prediction, revealing that all considered geomechanical features are significantly relevant to slope stability. However, the parameters of friction angle and slope height were found to be the most and least significant, respectively. In addition, to aid in the FOS computation for engineering challenges, a graphical user interface (GUI) for the ML-based techniques was created.

Segmentation of the Compensation Packages for Doctors by Mixture Regression Model (혼합회귀모델을 이용한 의사의 선호보상체계 분석)

  • Paik, Soo-Kyung;Kwak, Young-Sik
    • Korea Journal of Hospital Management
    • /
    • v.10 no.4
    • /
    • pp.75-97
    • /
    • 2005
  • The research objective is to empirically investigate the compensation packages maximizing the utilities of internal customers by applying the market segmentation theory. Data was collected from four Korean hospitals in Seoul, Busan and Gyunggi-do. The research is designed to seek the compensation package maximizing the utility of doctors by mixture regression model, which has been applied as latent structure and other type of finite mixture models from various academic fields since early 1980s. The mixture regression model shows the optimal segments number and fuzzy classification for each observation by EM(expectation-maximization algorism). The finite mixture regression model is to unmix the sample, to identify the groups, and to estimate the parameters of the density function underlying the observed data within each group. The doctors were segmented into 5 groups by their preference for the compensation package. The results of this study imply that the utility of doctors increases with differentiated compensation package segmented by their preference.

  • PDF