• Title/Summary/Keyword: fuzzy models

검색결과 658건 처리시간 0.164초

Voltage Sag and Swell Estimation Using ANFIS for Power System Applications

  • Malmurugan, N.;Gopal, Devarajan;Lho, Young Hwan
    • 한국철도학회논문집
    • /
    • 제16권4호
    • /
    • pp.272-277
    • /
    • 2013
  • Power quality is a term that is now extensively used in power systems applications, and in this context the voltage, current, and phase angle are discussed widely. In particular, different algorithms that are capable of detecting the voltage sag and swell information in a real time environment have been proposed and developed. Voltage sag and swell play an important role in determining the stability, quality, and operation of a power system. This paper presents ANFIS (Adaptive Network based Fuzzy Inference System) models with different membership functions to build the voltage shape with the knowledge of known system parameters, and detect voltage sag and swell accurately. The performance of each method has been compared with each other/other methods to determine the effectiveness of the different models, and the results are presented.

Machine Learning Application to the Korean Freshwater Ecosystems

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Chon, Tae-Soo;Joo, Gea-Jae
    • The Korean Journal of Ecology
    • /
    • 제28권6호
    • /
    • pp.405-415
    • /
    • 2005
  • This paper considers the advantage of Machine Learning (ML) implemented to freshwater ecosystem research. Currently, many studies have been carried out to find the patterns of environmental impact on dynamics of communities in aquatic ecosystems. Ecological models popularly adapted by many researchers have been a means of information processing in dealing with dynamics in various ecosystems. The up-to-date trend in ecological modelling partially turns to the application of ML to explain specific ecological events in complex ecosystems and to overcome the necessity of complicated data manipulation. This paper briefly introduces ML techniques applied to freshwater ecosystems in Korea. The manuscript provides promising information for the ecologists who utilize ML for elucidating complex ecological patterns and undertaking modelling of spatial and temporal dynamics of communities.

Power Flow Control of Grid-Connected Fuel Cell Distributed Generation Systems

  • Hajizadeh, Amin;Golkar, Masoud Aliakbar
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.143-151
    • /
    • 2008
  • This paper presents the operation of Fuel Cell Distributed Generation(FCDG) systems in distribution systems. Hence, modeling, controller design, and simulation study of a Solid Oxide Fuel Cell(SOFC) distributed generation(DG) system are investigated. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic and the neural network for the overall system is presented in order to activate power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.

다중 제어 시스템의 스위칭 특성을 이용한 과도 응답 개선 (The Improvement of the transient Response Using the Switching Property of Multiple Control Systems.)

  • 이형찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1100-1103
    • /
    • 1996
  • A well-known problem in adaptive control is the poor transient response which is observed when adaptation is initiated. This paper proposes a useful method to improve the transient response of adaptive control systems by using multiple models of the plant and switching mechanism by fuzzy inference. The models are identical except for initial estimates of the unknown plant parameteres. The control input to be applied is determined at every instant by the model which best approximates the plant. Simulation results are presented to indicate the performance improvement of adaptive control systems using the proposed method.

  • PDF

Evolvable Neural Networks Based on Developmental Models for Mobile Robot Navigation

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권3호
    • /
    • pp.176-181
    • /
    • 2007
  • This paper presents evolvable neural networks based on a developmental model for navigation control of autonomous mobile robots in dynamic operating environments. Bio-inspired mechanisms have been applied to autonomous design of artificial neural networks for solving practical problems. The proposed neural network architecture is grown from an initial developmental model by a set of production rules of the L-system that are represented by the DNA coding. The L-system is based on parallel rewriting mechanism motivated by the growth models of plants. DNA coding gives an effective method of expressing general production rules. Experiments show that the evolvable neural network designed by the production rules of the L-system develops into a controller for mobile robot navigation to avoid collisions with the obstacles.

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

Predicting tensile strength of reinforced concrete composited with geopolymer using several machine learning algorithms

  • Ibrahim Albaijan;Hanan Samadi;Arsalan Mahmoodzadeh;Danial Fakhri;Mehdi Hosseinzadeh;Nejib Ghazouani;Khaled Mohamed Elhadi
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.293-312
    • /
    • 2024
  • Researchers are actively investigating the potential for utilizing alternative materials in construction to tackle the environmental and economic challenges linked to traditional concrete-based materials. Nevertheless, conventional laboratory methods for testing the mechanical properties of concrete are both costly and time-consuming. The limitations of traditional models in predicting the tensile strength of concrete composited with geopolymer have created a demand for more advanced models. Fortunately, the increasing availability of data has facilitated the use of machine learning methods, which offer powerful and cost-effective models. This paper aims to explore the potential of several machine learning methods in predicting the tensile strength of geopolymer concrete under different curing conditions. The study utilizes a dataset of 221 tensile strength test results for geopolymer concrete with varying mix ratios and curing conditions. The effectiveness of the machine learning models is evaluated using additional unseen datasets. Based on the values of loss functions and evaluation metrics, the results indicate that most models have the potential to estimate the tensile strength of geopolymer concrete satisfactorily. However, the Takagi Sugeno fuzzy model (TSF) and gene expression programming (GEP) models demonstrate the highest robustness. Both the laboratory tests and machine learning outcomes indicate that geopolymer concrete composed of 50% fly ash and 40% ground granulated blast slag, mixed with 10 mol of NaOH, and cured in an oven at 190°F for 28 days has superior tensile strength.

함경북도 내 미래 알팔파 재배의 기후적합도 앙상블 전망 (Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo)

  • 현승민;현신우;김광수
    • 한국초지조사료학회지
    • /
    • 제44권2호
    • /
    • pp.71-82
    • /
    • 2024
  • 함경북도의 개간된 경사지의 작물 생산성과 지속 가능성을 증가시키기 위해 두과 조사료를 활용하는 것이 유리하다. 특히, 함경북도에서 두과 조사료인 알팔파를 대상으로 재배 가능지역을 파악하는 것이 미래를 대비한 사료작물 재배 관련 정책 결정에 도움이 될 수 있다. 본 연구에서는 작물의 기후적합도를 예측하는 Fuzzy Union 모형을 사용하여 현재와 미래조건에서 함경북도 내 알팔파의 기후적합도를 분석하고자 하였다. Fuzzy Union 모형으로 예측된 기후적합도와 미국 북부 지역의 실제 알팔파 재배 면적을 비교하였다. 또한, 전지구 기후모형 11종으로부터 얻어진 기후자료를 기후적합도를 계산하기 위한 입력자료로 사용하여 미래 기후변화 조건에서의 예측 불확도를 확인하였다. 미국 북부 지역을 대상으로 기후적합도의 주별 면적은 실제 알팔파 재배면적 변이의 약 44%를 설명하였다. 미래 기후조건에서 알팔파의 기후적합도는 함경북도 대부분의 지역에서 감소할 것으로 전망되었다. 예를 들어, 온성군과 경원군의 경우 현재 기후조건에서 기후적합도가 88 이상으로 분석되었지만 2090년대에 약 66%가 감소하였다. 본 연구에서 Fuzzy Union 모델을 사용하여 기후변화에 따른 알팔파 재배 적합지의 변동을 공간적으로 확인할 수 있었다. 특히, 21세기 후반에는 함경북도 지역에서 알팔파의 기후적합도가 하고현상으로 인해 크게 감소할 것으로 분석되었다. 추후에는 토양 조건을 반영하여 알팔파의 재배 적합지를 예측하고, 이와 함께 헤어리베치 등의 타 두과 사료작물의 기후적합도의 예측하는 연구가 필요할 것으로 사료되었다.

Support Vector Machine for Interval Regression

  • Hong Dug Hun;Hwang Changha
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.67-72
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property In fuzzy regression. However this is not a computationally expensive way. SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. In particular, SVM is a very attractive approach to model nonlinear interval data. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).