• 제목/요약/키워드: fuzzy membership function distribution

검색결과 33건 처리시간 0.02초

잡음 민감성이 개선된 변형 퍼지 주성분 분석 기법 (A Variant of Improved Robust Fuzzy PCA)

  • 김성훈;허경용;우영운
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.25-31
    • /
    • 2011
  • 주성분 분석(PCA)은 차원 축소와 특징 추출을 위해 널리 사용되는 기법 중의 하나이지만 자승 오류의 사용으로 인해 잡음에 민감한 단점이 있다. 이러한 잡음 민감성을 개선하기 위해 다양한 방법이 소개되었고 그 중 improved robust fuzzy PCA(RF-PCA2)는 퍼지 소속도를 이용한 반복적 최적화 기법으로 다른 방법에 비해 우수한 성능을 보였다. 하지만 RF-PCA2 역시 국부적인 최적해에 빠질 수 있으며 그 원인 중 하나는 RF-PCA2 알고리듬이 소속도를 균일한 값으로 초기화시키기 때문이다. 또한 퍼지 소속도를 사용하고 있지만 여전히 목적함수가 자승 오류 최소화에 기초하고 있다는 사실도 그 원인이 된다. 이 논문에서는 RF-PCA2의 이러한 문제점을 개선한 RF-PCA3를 제안한다. 제안하는 알고리듬은 RF-PCA2의 목적 함수를 바탕으로 하고 있다. 여기에 PCA의 목적 함수를 추가하고 초기 소속도 값을 데이터의 분포로부터 계산함으로써 전역 최적해에 가까운 해를 얻을 수 있는 가능성을 높여준다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다.

안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 1. 개발 및 통계적 검증 (Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 1. Development and Statistical Evaluation)

  • 박이준;김정훈
    • 대기
    • /
    • 제33권5호
    • /
    • pp.519-530
    • /
    • 2023
  • Deep convection can make adverse effects on safe and efficient aviation operations by causing various weather hazards such as convectively-induced turbulence, icing, lightning, and downburst. To prevent such damage, it is necessary to accurately predict spatiotemporal distribution of deep convective area near the airport and airspace. This study developed a new index, the Aviation Convective Index (ACI), for deep convection, using the operational global Unified Model of the Korea Meteorological Administration. The ACI was computed from combination of three different variables: 3-hour maximum of Convective Available Potential Energy, averaged Outgoing Longwave Radiation, and accumulative precipitation using the fuzzy logic algorithm. In this algorithm, the individual membership function was newly developed following the cumulative distribution function for each variable in Korean Peninsula. This index was validated and optimized by using the 1-yr period of radar mosaic data. According to the Receiver Operating Characteristics curve (AUC) and True Skill Score (TSS), the yearly optimized ACI (ACIYrOpt) based on the optimal weighting coefficients for 1-yr period shows a better skill than the no optimized one (ACINoOpt) with the uniform weights. In all forecast time from 6-hour to 48-hour, the AUC and TSS value of ACIYrOpt were higher than those of ACINoOpt, showing the improvement of averaged value of AUC and TSS by 1.67% and 4.20%, respectively.

ANFIS를 이용한 상수도 1일 급수량 예측에 관한 연구 (A Study of Prediction of Daily Water Supply Usion ANFIS)

  • 이경훈;문병석;강일환
    • 한국수자원학회논문집
    • /
    • 제31권6호
    • /
    • pp.821-832
    • /
    • 1998
  • 본 논문에서는 상수도시설을 효율적으로 운영하는 데 필요한 1일 급수량 수요를 예측하는 방식에 대하여 인공지능(Artificial Inteligence)이라 불리는 퍼지 뉴론(fuzzy neuron)을 이용하여 연구하였다. 퍼지뉴론이란 퍼지정보(fuzzy information)를 입력으로 받아들이고 처리하는 퍼지 신경망을 일컫는 말이다. 본 연구에서는 소속함수와 퍼지규칙을 신경망으로 학습하는 기능인 적응식 학습방법을 통하여 1일 급수량을 예측하였으며 연구대상 지역으로는 광주광역시를 선정하였다. 또한 1일 급수량 예측에 있어서 필요한 변수 선택을 위해 입력자료를 상관분석, 자기상관, 부분자기상관, 교차상관 분석 등을 하였으며 동정된 입력변수는 급수량, 평균기온, 급수인구이다. 먼저 급수량, 평균기온, 급수인구로 모델을 구성하였고, 한편으론 기상청의 기후예보자료를 신뢰할 수 없는 경우에는 급수량을 예측할 수 있도록 급수량 자료만으로 모델을 구성하여 그 유효성을 검증하였다. 제안된 모형식은 사고 등의 인위적인 조작(단수 등)이 가해지는 시기를 포함하고도 실측치와 모형의 예측치와의 오차율이 최대 18.46%, 평균2.36% 이내로 나타나, 모형의 결과는 상수도 시설의 운용 및 급·배수관망의 실시간 제어에 많은 도움을 주리라 생각된다.

  • PDF