• Title/Summary/Keyword: fuzzy membership function

Search Result 689, Processing Time 2.252 seconds

A VLSI-CMOS Programmable Membership Function Circuit: The Basic Block of Fuzzy Processing

  • Ruiz, Antonio;Gutierrez, Julio
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.977.2-980
    • /
    • 1993
  • The fuzzifier circuit DPFC 7 is presented. Its features are: programmable membership function, CMOS digital interface, analog and current mode internal processing and integrability without external components. It has been designed to obtain a basic efficient block for fuzzy processing, to be included in a future architecture.

  • PDF

Multiple Attribute Group Decision Making Problems Based on Fuzzy Number Intuitionistic Fuzzy Information

  • Park, Jin-Han;Kwun, Young-Chel;Park, Jong-Seo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.265-272
    • /
    • 2009
  • Fuzzy number intuitionistic fuzzy sets (FNIFSs), each of which is characterized by a membership function and a non-membership function whose values are trigonometric fuzzy number rather than exact numbers, are a very useful means to describe the decision information in the process of decision making. Wang [10] developed some arithmetic aggregation operators, such as the fuzzy number intuitionistic fuzzy weighted averaging (FIFWA) operator, the fuzzy number intuitionistic fuzzy ordered weighted averaging (FIFOWA) operator and the fuzzy number intuitionistic fuzzy hybrid aggregation (FIFHA) operator. In this paper, based on the FIFHA operator and the FIFWA operator, we investigate the group decision making problems in which all the information provided by the decision-makers is presented as fuzzy number intuitionistic fuzzy decision matrices where each of the elements is characterized by fuzzy number intuitionistic fuzzy numbers, and the information about attribute weights is partially known. An example is used to illustrate the applicability of the proposed approach.

Blending Precess Optimization using Fuzzy Set Theory an Neural Networks (퍼지 및 신경망을 이용한 Blending Process의 최적화)

  • 황인창;김정남;주관정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF

A STUDY ON MODIFIED MEMBERSHIP FUNCTION BASED ON FREQUENCY VARIATION OF LPC

  • Choi, Seung-Ho;Kim, Hyoung-Guen
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.1092-1097
    • /
    • 1994
  • To solve the frequency variation of speech patterns which consist of LPC sequences, a new membership function made by the relation between order of LPC and spectrum is proposed in this paper. To reduce errors, fuzzy inference is executed using the proposed membership function. The computer simulation shows the effectiveness of the word recognition.

  • PDF

Analysis on Port Image for Development of Port-City Considered Environment Using Fuzzy Theory (친환경 항만도시 개발을 위한 항만의 인식 분석 - 인천항만을 중심으로 -)

  • Jang Woon-Jae;Keum Jong-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.145-150
    • /
    • 2006
  • This paper proposes an analysis to image of Inchon port using fuzzy theory. After analysis, positive opinion is mean membership function 0.73 and positive membership function 0.27, negative opinion is mean membership function 0.69, negative membership function 0.31 about Inchon port development. therefore, for port development need to accomodation of each opinion positive opinion is maximum decrease from 20 age to 30 age. and negative opinion is maximum increase from 10 age to 20 age. According to the results, port development need to high positive image as leisure and development of waterfront and low negative image as integrated port management and strategy of considered environment port.

  • PDF

Fuzzy-Neural Networks by Means of Division of Fuzzy Input Space with Multi-input Variables (다변수 퍼지 입력 공간 분할에 의한 퍼지-뉴럴 네트워크)

  • Park, Ho-Sung;Yoon, Ki-Chan;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.824-826
    • /
    • 1999
  • In this paper, we design an Fuzzy-Neural Networks(FNN) by means of divisions of fuzzy input space with multi-input variables. Fuzzy input space of Yamakawa's FNN is divided by each separated input variable, but that of the proposed FNN is divided by mutually combined input variables. The membership functions of the proposed FNN use both triangular and gaussian membership types. The parameters such as apexes of membership functions, learning rates, momentum coefficients, weighting value, and slope are adjusted using genetic algorithms. Also, an aggregate objective function(performance index) with weighting value is utilized to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model, we use the data of sewage treatment process.

  • PDF

Fuzzy Classification Method for Processing Incomplete Dataset

  • Woo, Young-Woon;Lee, Kwang-Eui;Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.383-386
    • /
    • 2010
  • Pattern classification is one of the most important topics for machine learning research fields. However incomplete data appear frequently in real world problems and also show low learning rate in classification models. There have been many researches for handling such incomplete data, but most of the researches are focusing on training stages. In this paper, we proposed two classification methods for incomplete data using triangular shaped fuzzy membership functions. In the proposed methods, missing data in incomplete feature vectors are inferred, learned and applied to the proposed classifier using triangular shaped fuzzy membership functions. In the experiment, we verified that the proposed methods show higher classification rate than a conventional method.

Color Image Filter using an Enhanced Fuzzy Method (개선된 퍼지 기법을 이용한 컬러 영상 필터)

  • Kim, Kwang Baek;Lee, Byung Kwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.27-32
    • /
    • 2012
  • In this paper, we propose a fuzzy method that improves the existing problem of the fuzzy filtering algorithm. The proposed fuzzy filtering algorithm separates R, G, and B channels from the color image. Mask information was extracted from separated channels and the brightness of the mean value and median value for channels was applied in the function of the proposed fuzzy method to calculate the membership and achieve application in the inference rule. Also, the membership degrees of R, G, and B were used to distinguish the possibility of noise. The proposed fuzzy method selected three membership functions. If noise is distinguished, the noise is eliminated by selecting the median value or mean value as the relevant pixel value according to the degree of noise. By applying the proposed method in color images, it was verified that the proposed method is more effective in eliminating noise when compared with the conventional fuzzy filtering method.

Membership Function-based Classification Algorithms for Stability improvements of BCI Systems

  • Yeom, Hong-Gi;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.59-64
    • /
    • 2010
  • To improve system performance, we apply the concept of membership function to Variance Considered Machines (VCMs) which is a modified algorithm of Support Vector Machines (SVMs) proposed in our previous studies. Many classification algorithms separate nonlinear data well. However, existing algorithms have ignored the fact that probabilities of error are very high in the data-mixed area. Therefore, we make our algorithm ignore data which has high error probabilities and consider data importantly which has low error probabilities to generate system output according to the probabilities of error. To get membership function, we calculate sigmoid function from the dataset by considering means and variances. After computation, this membership function is applied to the VCMs.

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.