• Title/Summary/Keyword: fuzzy membership

Search Result 1,234, Processing Time 0.031 seconds

Minimum Fuzzy Membership Function Extraction for Automatic Premature Ventricular Contraction Detection (자동 조기심실수축 탐지를 위한 최소 퍼지소속함수의 추출)

  • Lim, Joon-Shik
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.125-132
    • /
    • 2007
  • This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM), NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The eight most important coefficients of d3 and d4 are selected by the non-overlap area distribution measurement method. The selected 8 coefficients are used for 3 data sets showing reliable accuracy rates 99,80%, 99,21%, and 98.78%, respectively, which means the selected input features are less dependent to the data sets. The ECG signal segments and fuzzy membership functions of the 8 coefficients enable input features to interpret explicitly.

  • PDF

A Fuzzy Traffic Controller Considering the spillback on the Multiple Crossroads

  • Kim, Young-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.722-728
    • /
    • 2003
  • In this paper, we propose a fuzzy traffic controller of Sugeno`s fuzzy model so as to model the nonlinear characteristics of controlling the traffic light. It use a degree of the traffic congestion of the preceding roads as an input so that it can cope with traffic congestion appropriately, which causes the loss of fuel and our discomfort. First, in order to construct fuzzy traffic controller of Sugeno`s fuzzy model, we model the control process of the traffic light by using Mamdani`s fuzzy model, which has the uniform membership functions of the same size and shape. Second, we make Mamdani`s fuzzy model with the non-uniform membership functions so that it can exactly reflect the knowledge of experts and operators. Last, we construct the fuzzy traffic controller of Sugeno`s fuzzy model by learning from the input/output data, which is retrieved from Mamdani`s fuzzy model with the non-uniform membership functions. We compared and analyzed the fixed traffic light controller, the fuzzy traffic controller of Mamdani`s fuzzy model and the fuzzy traffic controller of Sugeno`s fuzzy model by using the delay time and the proportion of the entered vehicles to the occurred vehicles. As a result of comparison, the fuzzy traffic controller of Sugeno`s fuzzy model showed the best performance.

Extracting Wisconsin Breast Cancer Prediction Fuzzy Rules Using Neural Network with Weighted Fuzzy Membership Functions (가중 퍼지 소속함수 기반 신경망을 이용한 Wisconsin Breast Cancer 예측 퍼지규칙의 추출)

  • Lim Joon Shik
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.717-722
    • /
    • 2004
  • This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer using neural network with weighted fuzzy membership functions (NNWFM). NNWFM is capable of self-adapting weighted membership functions to enhance accuracy in prediction from the given clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from the enhanced bounded sums of n set of weighted fuzzy membership functions. Two number of prediction rules extracted from NNWFM outperforms to the current published results in number of rules and accuracy with 99.41%.

Development and Analysis of Fuzzy Overall Equipment Effectiveness (OEE) in TPM (TPM에서 퍼지 OEE 모형의 개발 및 분석)

  • Choi, Sungwoon
    • Journal of the Korea Management Engineers Society
    • /
    • v.23 no.4
    • /
    • pp.87-103
    • /
    • 2018
  • This paper introduces the method to develop two main types of the fuzzy OEE (Overall Equipment Effectiveness) models via triangular membership function for measuring uncertainty. The fuzzy OEE includes model type 1 and model type 2. The model type 1 is used when the theoretical machine speed only reflects the time loss whereas model type 2 is used when the actual machine speed reflects both time and speed loss. Model type 2 has shown to perform a lower availability rate and a higher performance rate compared to model type 1. In addition, the fuzzy UPH (Unit Per Hour) which is derived from using the fuzzy OEE is presented to satisfy demand uncertainty. The fuzzy UPH can easily measure the fuzzy tact time and cycle time by reciprocating itself. Finally, this study demonstrates the fuzzy OEE models using IVIFS (Interval-Valued Intuitionistic Fuzzy Set) based on the characterization via membership function, non-membership function and hesitant function. For the purpose of analyzing the fuzzy system OEE, the OEE for each machine of plant structure is considered triangular interval-valued intuitionistic fuzzy number. Regardless of plant structure, the validity degree of fuzzy membership function of system OEE decreases when the number of machine with worst value of the validity degree increases. Corresponding examples are presented in this paper for practitioner to understand the applicability and practicability of the proposed fuzzy OEE methods.

Variational Image Dehazing using a Fuzzy Membership Function

  • Park, Hasil;Park, Jinho;Kim, Heegwang;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.85-92
    • /
    • 2017
  • This paper presents a dehazing method based on a fuzzy membership function and variational method. The proposed algorithm consists of three steps: i) estimate transmission through a pixel-based operation using a fuzzy membership function, ii) refine the transmission using an L1-norm-based regularization method, and iii) obtain the result of haze removal based on a hazy image formation model using the refined transmission. In order to prevent color distortion of the sky region seen in conventional methods, we use a trapezoid-type fuzzy membership function. The proposed method acquires high-quality images without halo artifacts and loss of color contrast.

A Fuzzy Based Solution for Allocation and Sizing of Multiple Active Power Filters

  • Moradifar, Amir;Soleymanpour, Hassan Rezai
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.830-841
    • /
    • 2012
  • Active power filters (APF) can be employed for harmonic compensation in power systems. In this paper, a fuzzy based method is proposed for identification of probable APF nodes of a radial distribution system. The modified adaptive particle swarm optimization (MAPSO) technique is used for final selection of the APFs size. A combination of Fuzzy-MAPSO method is implemented to determine the optimal allocation and size of APFs. New fuzzy membership functions are formulated where the harmonic current membership is an exponential function of the nodal injecting harmonic current. Harmonic voltage membership has been formulated as a function of the node harmonic voltage. The product operator shows better performance than the AND operator because all harmonics are considered in computing membership function. For evaluating the proposed method, it has been applied to the 5-bus and 18-bus test systems, respectively, which the results appear satisfactorily. The proposed membership functions are new at the APF placement problem so that weighting factors can be changed proportional to objective function.

Application of KITSAT-3 Images: Automated Generation of Fuzzy Rules and Membership Functions for Land-cover Classification of KITSAT-3 Images

  • Park, Won-Kyu;Choi, Soon-Dal
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.48-53
    • /
    • 1999
  • The paper presents an automated method for generating fuzzy rules and fuzzy membership functions for pattern classification from training sets of examples and an application to the land-cover classification. Initially, fuzzy subspaces are created from the partitions formed by the minimum and maximum of individual feature values of each class. The initial membership functions are determined according to the generated fuzzy partitions. The fuzzy subspaces are further iteratively partitioned if the user-specified classification performance has not been archived on the training set. Our classifier was trained and tested on patterns consisting of the DN of each band, (XS1, XS2, XS3), extracted from KITSAT-3 multispectral scene. The result represents that our classification method has higher generalization power.

  • PDF

Development of Fuzzy Membership Function for Emotional Satisfaction Quantification (감성 만족도의 정량화를 위한 퍼지 소속 함수 개발)

  • Park, Jun-Seok;Myeong, No-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.37-54
    • /
    • 2004
  • Fuzzy theory provides an intelligence treatment model for judgement about information when it needs a solution or a decision making about vague problems. Therefore, fuzzy theory is used for appropriate evaluation and decision on obscure information as human's emotion in human factors, In previous study, fuzzy membership function is defined for judgement infOlmation as human's emotion then ultimate results are deducted through fuzzy inference model. This method uses general CWTent through literature review or max, min and average as representative statics value about considering variables. But, this method makes away with nonlinear's or inegular's factors of human sensibility. Accordingly, application of this method leads to considerable loss of information in the ultimate evaluation. For that reason, this method has a limitation in objective evaluation of human factors. So, this study focuses on development of fuzzy membership function, which evaluates human's emotion or feeling accurately and objectively. We used the regression analysis and reasoned a fuzzy membership function about the relation of the variables. Then we verified the adequacy with the reliability through the experiment after this.

A Study on an Adaptive Membership Function for Fuzzy Inference System

  • Bang, Eun-Oh;Chae, Myong-Gi;Lee, Snag-Bae;Tack, Han-Ho;Kim, Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.532-538
    • /
    • 1998
  • In this paper, a new adaptive fuzzy inference method using neural network based fuzzy reasoning is proposed to make a fuzzy logic control system more adaptive and more effective. In most cases, the design of a fuzzy inference system rely on the method in which an expert or a skilled human operator would operate in that special domain. However, if he has not expert knowledge for any nonlinear environment, it is difficult to control in order to optimize. Thus, using the proposed adaptive structure for the fuzzy reasoning system can controled more adaptive and more effective in nonlinear environment for changing input membership functions and output membership functions. The proposed fuzzy inference algorithm is called adaptive neuro-fuzzy control(ANFC). ANFC can adapt a proper membership function for nonlinear plant, based upon a minimum number of rules and an initial approximate membership function. Nonlinear function approximation and rotary inverted pendulum control system ar employed to demonstrate the viability of the proposed ANFC.

  • PDF

Fuzzy Regression Analysis Using Fuzzy Neural Networks (퍼지 신경망에 의한 퍼지 회귀분석)

  • Kwon, Ki-Taek
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.2
    • /
    • pp.371-383
    • /
    • 1997
  • This paper propose a fuzzy regression method using fuzzy neural networks when a membership value is attached to each input-output pair. First, a method of linear fuzzy regression analysis is described by interpreting the reliability of each input-output pair as its membership values. Next, an architecture of fuzzy neural networks with fuzzy weights and fuzzy biases is shown. The fuzzy neural network maps a crisp input vector to a fuzzy output. A cost function is defined using the fuzzy output from the fuzzy neural network and the corresponding target output with a membership value. A learning algorithm is derived from the cost function. The derived learning algorithm trains the fuzzy neural network so that the level set of the fuzzy output includes the target output. Last, the proposed method is illustrated by computer simulations on numerical examples.

  • PDF