• 제목/요약/키워드: fuzzy logic inference system

검색결과 196건 처리시간 0.03초

A Study on an Adaptive Membership Function for Fuzzy Inference System

  • Bang, Eun-Oh;Chae, Myong-Gi;Lee, Snag-Bae;Tack, Han-Ho;Kim, Il
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.532-538
    • /
    • 1998
  • In this paper, a new adaptive fuzzy inference method using neural network based fuzzy reasoning is proposed to make a fuzzy logic control system more adaptive and more effective. In most cases, the design of a fuzzy inference system rely on the method in which an expert or a skilled human operator would operate in that special domain. However, if he has not expert knowledge for any nonlinear environment, it is difficult to control in order to optimize. Thus, using the proposed adaptive structure for the fuzzy reasoning system can controled more adaptive and more effective in nonlinear environment for changing input membership functions and output membership functions. The proposed fuzzy inference algorithm is called adaptive neuro-fuzzy control(ANFC). ANFC can adapt a proper membership function for nonlinear plant, based upon a minimum number of rules and an initial approximate membership function. Nonlinear function approximation and rotary inverted pendulum control system ar employed to demonstrate the viability of the proposed ANFC.

  • PDF

Integrated GUI Environment of Parallel Fuzzy Inference System for Pattern Classification of Remote Sensing Images

  • Lee, Seong-Hoon;Lee, Sang-Gu;Son, Ki-Sung;Kim, Jong-Hyuk;Lee, Byung-Kwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권2호
    • /
    • pp.133-138
    • /
    • 2002
  • In this paper, we propose an integrated GUI environment of parallel fuzzy inference system fur pattern classification of remote sensing data. In this, as 4 fuzzy variables in condition part and 104 fuzzy rules are used, a real time and parallel approach is required. For frost fuzzy computation, we use the scan line conversion algorithm to convert lines of each fuzzy linguistic term to the closest integer pixels. We design 4 fuzzy processor unit to be operated in parallel by using FPGA. As a GUI environment, PCI transmission, image data pre-processing, integer pixel mapping and fuzzy membership tuning are considered. This system can be used in a pattern classification system requiring a rapid inference time in a real-time.

퍼지 동정에 의한 교통경로선택 (Traffic Rout Choice by means of Fuzzy Identification)

  • 오성권;남궁문;안태천
    • 한국지능시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.81-89
    • /
    • 1996
  • 퍼지모델링의 설계 방법을 교통경로선택의 모델동정을 위하여 제안한다. 제안된 퍼지모델은 최적화이론, 퍼지구현규칙을 사용하여 ""IF..., THEN...""의 효율적인 형태로 시스템구조와 파라미터 동정을 시행한다. 이 논문에서 간략추론, 선형추론, 병형된 선형추론의 3가지종류의 퍼지모델링 방법을 제시한다. 이 퍼지추론 방법은 인간의 교통행동의 정확한 추정과 정밀한 묘사를 위해 교통경로선택 모델을 개발하기 위해 이용된다. 퍼지규칙의 전반부 구조와 파라미터를 동정하기 위해 개선된 컴플렉스법을 사용하고, 최적후반부 파라미터를 동정하기 위해 최소자승법이 사용된다. 교통경로선택 데이타가 제안된 퍼지모델 성능을 평가하기 위해 사옹된다. 제안된 방법이 기존의 다른 연구들 - 즉 BL, PS, FL, NN, FNNs 모델 등 - 보다 더 높은 정확도를 가진 퍼지모델을 생성함을 보인다. 생성함을 보인다.

  • PDF

택시 운행 중 상태변화에 대한 자율적 의사결정을 위한 퍼지 에이전트 (A Fuzzy Agent System to Control the State Transition for an Autonomous Decision Making on Taxi Driving)

  • 임춘규;강병욱
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.413-420
    • /
    • 2005
  • 본 논문에서는 상태변화에 대한 자율적 의사결정을 하는 퍼지논리를 이용한 에이전트의 구현을 택시에 적용 하는 것을 연구의 목적으로 한다. 이를 위하여 인공 지능 이론을 기반으로 한 실시간 반응형 에이전트를 통하여 인공 지능적으로 운행하는 자동차에 대해서 실험을 하였다. 실시간 반응형 에이전트를 구성하기 위한 추론방식으로는 max-product 기법과 n개 퍼지 규칙들 또는 연관들 ($A_l,\;B_l),\;{\ldots}(A_n,\;B_n$)을 가지는 상황을 고려하여 비퍼지화 작업을 수행하여 중심값을 추출하여 추론 작업을 실행하였다.

A Study on Trend Impact Analysis Based of Adaptive Neuro-Fuzzy Inference System

  • Yong-Gil Kim;Kang-Yeon Lee
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.199-207
    • /
    • 2023
  • Trend Impact Analysis is a prominent hybrid method has been used in future studies with a modified surprise- free forecast. It considers experts' perceptions about how future events may change the surprise-free forecast. It is an advanced forecasting tool used in futures studies for identifying, understanding and analyzing the consequences of unprecedented events on future trends. In this paper, we propose an advanced mechanism to generate more justifiable estimates to the probability of occurrence of an unprecedented event as a function of time with different degrees of severity using adaptive neuro-fuzzy inference system (ANFIS). The key idea of the paper is to enhance the generic process of reasoning with fuzzy logic and neural network by adding the additional step of attributes simulation, as unprecedented events do not occur all of a sudden but rather their occurrence is affected by change in the values of a set of attributes. An ANFIS approach is used to identify the occurrence and severity of an event, depending on the values of its trigger attributes.

A Nutrition Evaluation System Based on Hierarchical Fuzzy Approach

  • Son, Chang-S.;Jeong, Gu-Beom
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.87-93
    • /
    • 2008
  • In this paper, we propose a hierarchical fuzzy based nutrition evaluation system that can analyze the individuals' nutrition status through the inference results generated by each layer. Moreover, a method to minimize the uncertainty of inference in the evaluated nutrition status is discussed. To show the effect of the uncertainty in fuzzy inference, we compared the results of nutrition evaluation with/without the certainty factor of rules on 132 people over the age of 65. From the experimental results, we can see that the evaluation method with the modified certainty factor provides better reliability than that of the general evaluation method without the certainty factor.

$\alpha$-레벨 퍼지집합 분해에 의한 직류 서보제어용 퍼지 PI+PD 로직회로 구현 (Implemented of Fuzzy PI+PD Logic circuits for DC Servo Control Using Decomposition of $\alpha$-level fuzzy set)

  • 홍정표;원태현;정종원;이영수;이상무;홍순일
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.127-129
    • /
    • 2008
  • This paper describes a method of approximate reasoning for fuzzy control of servo system, based on decomposition of -level fuzzy sets. It is propose that logic circuits for fuzzy PI+PD are a body from fuzzy inference to defuzzificaion in cases where the output variable u directly is generated PWM. The effectiveness for robust and faster response of the fuzzy control scheme is verified for a variable parameter by comparison with a PID control and fuzzy control. A position control of DC servo system with a fuzzy logic controller successfully demonstrated.

  • PDF

데이타 베이스를 이용한 자기 구성 퍼지 제어기 (Self-organizing fuzzy controller using data base)

  • 윤형식;이평기;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.579-583
    • /
    • 1991
  • A fuzzy logic controller with rule modification capability is proposed to overcome the difficulty of obtaining control rules from the human operators. This new SOC algorithm modifies control rules by a fuzzy inference machine utilizing data base. Computer simulation results show good performances on both a linear system and a nonlinear system.

  • PDF

$\alpha$-레벨 퍼지집합 분해에 의한 직류 서보제어용 퍼지추론 연산회로 구현 (Implemented Logic Circuits of Fuzzy Inference Engine for DC Servo Control Using decomposition of $\alpha$-level fuzzy set)

  • 이요섭;손의식;홍순일
    • 한국정보통신학회논문지
    • /
    • 제8권5호
    • /
    • pp.1050-1057
    • /
    • 2004
  • 연구의 목적은 컴퓨터 도움 없이 독립으로 서보시스템의 퍼지제어를 위한 퍼지제어기 하드웨어 회로 개발이다 본 논문은 $\alpha$-레벨 퍼지집합 분해에 기초하여 DC 서보 시스템의 퍼지제어를 위해 퍼지 추론 연산의 하드웨어에 대하여 나타내었다. 퍼지추론에서 비퍼지화까지 일체적으로 퍼지추론 연산에 의해 직접 PWM 조작신호를 얻는 방법이 제안되었다. 이 방법은 아날로그 회로로 쉽게 구현할 수있다. 퍼지제어기 입출력 특성과 직류서보 전동기 퍼지제어 응답특성에서 $\alpha$-레벨 양자화 효과에 대하여 검토한 결과 양자화 수 $\alpha$=4 단계가 충분한 것을 알 수 있다. 제안한 하드웨어 방법은 실 직류 서보시스템의 적용에서 실험을 통하여 그 효과를 나타내었다.

도립진자 시스템의 뉴로-퍼지 제어에 관한 연구 (A Study on the Neuro-Fuzzy Control for an Inverted Pendulum System)

  • 소명옥;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.11-19
    • /
    • 1996
  • Recently, fuzzy and neural network techniques have been successfully applied to control of complex and ill-defined system in a wide variety of areas, such as robot, water purification, automatic train operation system and automatic container crane operation system, etc. In this paper, we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feedforward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand, feedforward neural networks provide salient features, such as learning and parallelism. In the proposed neuro-fuzzy controller, the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error backpropagation algorithm as a learning rule, while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally, the effectiveness of the proposed controller is verified through computer simulation of an inverted pendulum system.

  • PDF