• 제목/요약/키워드: fuzzy logic control (FLC)

검색결과 236건 처리시간 0.027초

퍼지 속도 추정기를 이용한 유도전동기 속도 센서리스 제어 (Speed Sensorless Control of an Induction Motor using Fuzzy Speed Estimator)

  • 최성대;김낙교
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.183-187
    • /
    • 2007
  • This paper proposes Fuzzy Speed Estimator using Fuzzy Logic Controller(FLC) as a adaptive law in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. Fuzzy Speed Estimator estimates the speed of an induction motor with a rotor flux of the reference model and the adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error of the rotor flux as the input of FLC. The experiment is executed to verify the propriety and the effectiveness of the proposed speed estimator.

DGPS와 퍼지제어를 이용한 스피드스프레이어의 자율주행(I) - 그래픽 시뮬레이션 - (Autonomous Speedsprayer Using DGPS and Fuzzy Control(I) - Graphic Simulation -)

  • 조성인;이재훈;정선옥
    • Journal of Biosystems Engineering
    • /
    • 제22권4호
    • /
    • pp.487-496
    • /
    • 1997
  • A fuzzy logic controller(FLC) was developed for the autonomous travel of speedsprayer in an orchard. The autonomous travel with the FLC was graphically simulated under the conditions of an ordinary standard orchard. Differential global positioning system(DGPS) was used to find the direction of running and four ultrasonic sensors were used to detect obstacles during the running. The simulation results showed that the speedsprayer, by the FLC combined with DGPS and the ultrasonic sensors. could overcome the turning problem at comers which could not be solved with such a system as machine vision and might be operated autonomously.

  • PDF

유전알고리즘.신경회로망.퍼지논리가 결합된 지능제어기의 구현 (Realization of Intelligence Controller Using Genetic Algorithm.Neural Network.Fuzzy Logic)

  • 이상부;김형수
    • 디지털콘텐츠학회 논문지
    • /
    • 제2권1호
    • /
    • pp.51-61
    • /
    • 2001
  • 퍼지 제어기(FLC)는 고전적인 제어기 보다 외란에 강하고 초기치에 대한 과도응답도 우수할 뿐만 아니라 시스템의 수학적 모델과 파라메터 값을 알지 못하더라도 적절한 제어가 가능하다. 그러나 퍼지 제어기의 제어 규칙 생성은 전문가의 경험과 일단 결정된 제어 규칙은 고정됨으로 인해 제어 시스템의 환경변화에 적응할 수 없는 한계성이 있다. 또한 제어기의 출력값은 미세한 오차를 가지곤 있어 정확한 목표 값에 수렴할 수 없다. 이러한 미세한 오차를 없애기 위하여 여러 가지 방법이 연구되고 있는데, 본 논문에서는 FLC에 NN(Neural Network)과 GA(Genetic Algorithm)를 결합한 GA-FNNIC(유전알고리즘-퍼지 신경망 지능 제어기 : Genetic Algorithm - Fuzzy Neural network Intelligence Controller)를 제안한다. 제안된 GA-FNNIC와 FLC 제어기 간의 출력 특성, 수렴속도, 과도특성과 상승시간에 대해 비교 분석하고, 최종적으로 본 GA-FNNIC가 오차없이 목표치에 정확하게 수렴하는 것을 보인다.

  • PDF

적응 가변구조 개념을 이용한 퍼지 제어기의 설계 (Design of fuzzy logic controller based on adaptive variable structure controller)

  • 박귀태;이기상;박태홍;배상욱;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.382-386
    • /
    • 1992
  • In this paper, the author proposed FLVSC(Fuzzy Logic Variable Structure Controller), of which control rules are extracted from the concepts of VSC(Variable Structure Control). FLC(Fuzzy Logic Controller) based on linguistic rules has the advantages of not needing of some exact mathematical model for plant to be controlled. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbances, parameter variations and uncertainties in sliding mode. In addition, the method has the properties of FLC - noise rejection capability etc. The computer simulations have been carried out for a DC servo motor to show the usefulness of the proposed method and the effects of disturbances and parameter variations are considered.

  • PDF

유전알고리즘과 진화프로그램을 이용한 퍼지제어기의 성능 향상에 관한 연구 (A Study on the Performance Improvement of Fuzzy Controller Using Genetic Algorithm and Evolution Programming)

  • 이상부;임영도
    • 한국지능시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.58-64
    • /
    • 1997
  • FLC(퍼지 제어기 : Fuzzy Logic Controller)는 고전적 제어기보다 외란(disturbance)에 강하고 초기 치의 과도측성(overshoot)이 우수하다. 그리고 미지의 프로세스(process)나 복잡한 시스템의 수학적인 모델링이 불가능한 경우에도 퍼지 추론에 의하여 적절한 제어량을 얻을 수 있다. 그러나 퍼지변수의 양자화 단계 크기에 의해 출력값이 항상 미세한 오차를 가지므로 목표치에 정확히 수럼하지 못한다.[1]. 이 미세한 오차를 제거하기 위한 여러 방법이 [2~4]있지만 본 논문에서는 FLC에 GA(유전알고리즘 : Genetic Algorithm)와 EP(진화프로그래밍 : Evolution programming)를 결합한 GA-FLC, EPFLC Hybrid 제어기를 제안한다. 이 Hybrid 제어기의 츨력 특성과 FLC의 출력 특성을 비교 분석하고, 이 Hybrid 제어기가 오차없이 목표치에 잘 수렴하는 것을 보이고자 한다. 또한 이 두 종류의 Hybrid제어기 수렴 속도 성능도 비교한다.

  • PDF

MRAS Speed Estimator Based on Type-1 and Type-2 Fuzzy Logic Controller for the Speed Sensorless DTFC-SVPWM of an Induction Motor Drive

  • Ramesh, Tejavathu;Panda, Anup Kumar;Kumar, S. Shiva
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.730-740
    • /
    • 2015
  • This paper presents model reference adaptive system speed estimators based on Type-1 and Type-2 fuzzy logic controllers for the speed sensorless direct torque and flux control of an induction motor drive (IMD) using space vector pulse width modulation. A Type-1 fuzzy logic controller (T1FLC) based adaptation mechanism scheme is initially presented to achieve high performance sensorless drive in both transient as well as in steady-state conditions. However, the Type-1 fuzzy sets are certain and cannot work effectively when a higher degree of uncertainties occurs in the system, which can be caused by sudden changes in speed or different load disturbances and, process noise. Therefore, a new Type-2 FLC (T2FLC) - based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties, improve the performance, and is also robust to different load torque and sudden changes in speed conditions. The detailed performance of different adaptation mechanism schemes are performed in a MATLAB/Simulink environment with a speed sensor and sensorless modes of operation when an IMD is operates under different operating conditions, such as no-load, load, and sudden changes in speed. To validate the different control approaches, the system is also implemented on a real-time system, and adequate results are reported for its validation.

피지 슬라이딩 제어를 이용한 트럭 역주행 제어 (Truck Backer-Upper Control using Fuzzy-Sliding Control)

  • 송영목;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2476-2478
    • /
    • 2000
  • Fuzzy Systems which are based on membership functions and rules, can control nonlinear, uncertain, complex systems well. However, Fuzzy logic controller(FLC) has problems: It is some difficult to design the stable FLC for a beginner. Because FLC depends mainly on individual experience. Sliding control is a powerful robust method to control nonlinearities and uncertain parameters systems. But it has a chattering problem by discontinuous control input according to sliding surface. Therfore it needs to be smoothed to achieve an optimal input. In this paper, To solve problems desinged Fuzzy Sliding Control. The effictiveness of result is shown by the simulation and the experimental test for Truck Backer-Upper Control.

  • PDF

퍼지 제어기를 이용한 영구자석 교류전동기의 센서리스 속도제어 (Sensorless Speed Control of Permanent Magnet AC Motor Using Fuzzy Logic Controller)

  • 최성대;고봉운;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권6호
    • /
    • pp.389-394
    • /
    • 2004
  • This paper proposes a speed estimation method using FLC(Fuzzy Logic Controller) in order to realize the speed control of PMAM(Permanent Magnet AC Motor) with no speed sensor. This method uses FLC as a adaptive laws of MRAS(Model Reference Adaptive System) and estimates the rotor speed of PMAM with a difference between the reference model and the adjustable model. Speed control is performed by PI controller with the estimated speed. The experiment is executed to verify the propriety and the effectiveness of the proposed system.

Analysis and Auto-tuning of Scale Factors of Fuzzy Logic Controller

  • Lee, Chul-Heui;Seo, Seon Hak
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.51-56
    • /
    • 1998
  • In this paper, we analyze the effects of scaling factors on the performance of a fuzzy logic controller(FLC). The quantitative relation between input and output variables of FLC is obtained by using a qualsi-linear fuzzy model, and an approximate transfer function of FLC is dervied from the comparison of it with the conventional PID controller. Then we analyze in detail the effects of scaling factor using this approximate transfer function and root locus method. Also we suggest an on-line tuning method for scaling factors which employs an sample performance function and a variable reference for tuning index.

  • PDF