• Title/Summary/Keyword: fuzzy logic approach

Search Result 398, Processing Time 0.031 seconds

A FUZZY-BASED APPROACH FOR TRAFFIC JAM DETECTION

  • Abd El-Tawaba, Ayman Hussein;Abd El Fattah, Tarek;Mahmood, Mahmood A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.257-263
    • /
    • 2021
  • Though many have studied choosing one of the alternative ways to reach a destination, the factors such as average road speed, distance, and number of traffic signals, traffic congestion, safety, and services still presents an indisputable challenge. This paper proposes two approaches: Appropriate membership function and ambiguous rule-based approach. It aims to tackle the route choice problem faced by almost all drivers in any city. It indirectly helps in tackling the problem of traffic congestion. The proposed approach considers the preference of each driver which is determined in a flexible way like a human and stored in the driver profile. These preferences relate to the criteria for evaluating each candidate route, considering the average speed, distance, safety, and services available. An illustrative case study demonstrates the added value of the proposed approach compared to some other approaches.

Developing a comprehensive model of the optimal exploitation of dam reservoir by combining a fuzzy-logic based decision-making approach and the young's bilateral bargaining model

  • M.J. Shirangi;H. Babazadeh;E. Shirangi;A. Saremi
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.65-76
    • /
    • 2023
  • Given the limited water resources and the presence of multiple decision makers with different and usually conflicting objectives in the exploitation of water resources systems, especially dam's reservoirs; therefore, the decision to determine the optimal allocation of reservoir water among decision-makers and stakeholders is a difficult task. In this study, by combining a fuzzy VIKOR technique or fuzzy multi-criteria decision making (FMCDM) and the Young's bilateral bargaining model, a new method was developed to determine the optimal quantitative and qualitative water allocation of dam's reservoir water with the aim of increasing the utility of decision makers and stakeholders and reducing the conflicts among them. In this study, by identifying the stakeholders involved in the exploitation of the dam reservoir and determining their utility, the optimal points on trade-off curve with quantitative and qualitative objectives presented by Mojarabi et al. (2019) were ranked based on the quantitative and qualitative criteria, and economic, social and environmental factors using the fuzzy VIKOR technique. In the proposed method, the weights of the criteria were determined by each decision maker using the entropy method. The results of a fuzzy decision-making method demonstrated that the Young's bilateral bargaining model was developed to determine the point agreed between the decisions makers on the trade-off curve. In the proposed method, (a) the opinions of decision makers and stakeholders were considered according to different criteria in the exploitation of the dam reservoir, (b) because the decision makers considered the different factors in addition to quantitative and qualitative criteria, they were willing to participate in bargaining and reconsider their ideals, (c) due to the use of a fuzzy-logic based decision-making approach and considering different criteria, the utility of all decision makers was close to each other and the scope of bargaining became smaller, leading to an increase in the possibility of reaching an agreement in a shorter time period using game theory and (d) all qualitative judgments without considering explicitness of the decision makers were applied to the model using the fuzzy logic. The results of using the proposed method for the optimal exploitation of Iran's 15-Khordad dam reservoir over a 30-year period (1968-1997) showed the possibility of the agreement on the water allocation of the monthly total dissolved solids (TDS)=1,490 mg/L considering the different factors based on the opinions of decision makers and reducing conflicts among them.

An Approach to Generate A Theory of Coordination for Multi-Agent Systems

  • Kim, Eun Gyung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.277-282
    • /
    • 2004
  • This paper outlines our approach and the underlying design principles aimed at the generation of a theory of coordination. Such theory would assist in designing new Multi-Agent Systems(MAS) and provide trouble-shooting tools for suboptimally functioning MAS. This paper also describes the decisions that have been made in this endeavor. We have been able to show via a simplified model that approach is feasible and can produce results.

An integral based fuzzy approach to evaluate waste materials for concrete

  • Onat, Onur;Celik, Erkan
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.323-333
    • /
    • 2017
  • Waste materials in concrete have been considered as one of the most important issues by the authorities, policy makers and researchers to maintain engineering serviceability in terms of economy, durability and sustainability. Therefore, evaluation and selection of waste materials with respect to multi criteria decision making (MCDM) for the construction industry has been gained importance for recovery and reuse. In this paper, Choquet integral based fuzzy approach is proposed for evaluating the most suitable waste materials with respect to compressive strength, tensile strength, flexural strength, compactness, toughness (resistivity for dynamic loads), water absorption and accessibility. On conclusion, waste tyre and silica fume were determined as the most suitable waste materials for concrete production. The obtained results are recommended to assist the authorities on configuring well designed strategies for construction industry with disposal materials.

An Adaptive Fuzzy Backstepping Approach to Robust Tracking Control of a Single-Link Flexible Joint Robot (적응형 퍼지 백스테핑 방식을 이용한 단일축 유연관절 로봇의 강인 제어)

  • 김은태;이희진
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.1-12
    • /
    • 2004
  • This paper presents an adaptive fuzzy backstepping (AFB) controller for a single-link flexible joint robot in the Presence of Parametric uncertainties and external disturbances. Adaptive fuzzy logic systems are used as universal approximators to counteract the model uncertainties coming from robot dynamics and to compensate for the nonlinearities coming from adaptive backstepping method. The approach suggested herein does not require neither an additional supervisory nor a robustifying controller and guarantees that tracking error is uniformly ultimately bounded (UUB) within a sufficiently small residual set. Finally, a simulation result is given to demonstrate the robust tracking performance of proposed design method.

Two-Link Manipulator Control Using Indirect Adaptive Fuzzy Controller

  • N., Waurajitti;J., Ngamwiwit;T., Benjanarasuth;H., Hirata;N., Komine
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.445-445
    • /
    • 2000
  • This paper proposes the MIMO indirect adaptive fuzzy controller to control the two-link manipulators. The input-output linearization technique, equivalent control input plus integral term, augmented error model and recursive least square adaptive law are used fer the controller. The linear type of fuzzifier-defuzzifier fuzzy logic system used for nonlinear function makes easy to farm the error model and able to follow the adaptive system approach. Such that control approach, the control system is not required joint speed and accerelation measurement and easy to implement and tune. The simulation results showed that the proposed controller has good control performance, stability, very small tracking error, decoupling, fast convergence, robust to parameter variation and load.

  • PDF

NEW INTELLIGENT APPROACH FOR PROJECT MANAGEMENT IN CONSTRUCTION INDUSTRY

  • D. Aparna;D. Sridhar;J. Rajani;B. Sravani;V.S.S. Kumar
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.366-370
    • /
    • 2005
  • The construction environment is dynamic in nature and is characterized by various degrees of uncertainties. The uncertainties such as lack of coordination, non availability of resources, condition of temporary structures and varying weather conditions have a significant impact on estimating the duration of activities. These are subjective, vague and imprecisely defined and are expressed in subjective measures rather than mathematical terms. Conventionally, various quantitative techniques such as CPM and PERT have emerged in construction industry. These techniques cannot solve the above problems and rely on human experts which may not always be possible. In such situations Artificial Intelligence tools such as fuzzy sets and neural networks handle such variables and provide global strategies. The present paper evaluates the effect of qualitative factors to identify the activity duration using new intelligent approach. The results are compared with conventional methods for effective project management. A case study is considered to demonstrate the applicability of fuzzy logic for project scheduling.

  • PDF

Neuro-Fuzzy Approach for Predicting EMG Magnitude of Trunk Muscles (뉴로-퍼지 시스템에 의한 몸통근육군의 EMG 크기 예측 방법론)

  • Lee, Uk-Gi
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.87-99
    • /
    • 2000
  • This study aims to examine a fuzzy logic-based human expert EMG prediction model (FLHEPM) for predicting electromyographic responses of trunk muscles due to manual lifting based on two task (control) variables. The FLHEPM utilizes two variables as inputs and ten muscle activities as outputs. As the results, the lifting task variables could be represented with the fuzzy membership functions. This provides flexibility to combine different scales of model variables in order to design the EMG prediction system. In model development, it was possible to generate the initial fuzzy rules using the neural network, but not all the rules were appropriate (87% correct ratio). With regard to the model precision, the EMG signals could be predicted with reasonable accuracy that the model shows mean absolute error of 8.43% ranging from 4.97% to 13.16% and mean absolute difference of 6.4% ranging from 2.88% to 11.59%. However, the model prediction accuracy is limited by use of only two task variables which were available for this study (out of five proposed task variables). Ultimately, the neuro-fuzzy approach utilizing all five variables to predict either the EMG activities or the spinal loading due to dynamic lifting tasks should be developed.

  • PDF

Fuzzy Indexing and Retrieval in CBR with Weight Optimization Learning for Credit Evaluation

  • Park, Cheol-Soo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.491-501
    • /
    • 2002
  • Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. CBR is a reasoning methodology that exploits similar experienced solutions, in the form of past cases, to solve new problems. Hybrid model achieves some convergence of the wide proliferation of credit evaluation modeling. As a result, Hybrid model showed that proposed methodology classify more accurately than any of techniques individually do. It is confirmed that proposed methodology predicts significantly better than individual techniques and the other combining methodologies. The objective of the proposed approach is to determines a set of weighting values that can best formalize the match between the input case and the previously stored cases and integrates fuzzy sit concepts into the case indexing and retrieval process. The GA is used to search for the best set of weighting values that are able to promote the association consistency among the cases. The fitness value in this study is defined as the number of old cases whose solutions match the input cases solution. In order to obtain the fitness value, many procedures have to be executed beforehand. Also this study tries to transform financial values into category ones using fuzzy logic approach fur performance of credit evaluation. Fuzzy set theory allows numerical features to be converted into fuzzy terms to simplify the matching process, and allows greater flexibility in the retrieval of candidate cases. Our proposed model is to apply an intelligent system for bankruptcy prediction.

  • PDF

A Hybrid Approach Using Case-Based Reasoning and Fuzzy Logic for Corporate Bond Rating (퍼지집합이론과 사례기반추론을 활용한 채권등급예측모형의 구축)

  • Kim Hyun-jung;Shin Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.91-109
    • /
    • 2004
  • This study investigates the effectiveness of a hybrid approach using fuzzy sets that describe approximate phenomena of the real world. Compared to the other existing techniques, the approach handles inexact knowledge in common linguistic terms as human reasoning does it. Integration of fuzzy sets with case-based reasoning (CBR) is important in that it helps to develop a successful system far dealing with vague and incomplete knowledge which statistically uses membership value of fuzzy sets in CBR. The preliminary results show that the accuracy of the integrated fuzzy-CBR approach proposed for this study is higher that of conventional techniques. Our proposed approach is applied to corporate bond rating of Korean companies.

  • PDF