• Title/Summary/Keyword: fuzzy logic approach

Search Result 398, Processing Time 0.026 seconds

Stability analysis of fuzzy logic controller using the concept of sector bound nonlinearity (제한된 부채꼴에서의 비선형 개념을 이용한 퍼지 논리제어기의 안정성 해석)

  • 김인익;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.573-578
    • /
    • 1991
  • A stability analysis technique has been proposed for linear SISO system associated with fuzzy logic controller. An analysis technique using the concept of well-known sector bound nonlinearity and its graphical interpretation, i.e., the circle criterion, is presented. Thus the use of classical Nyquist locus and the BODE diagram is brought into the picture. The aim of this present note is to represent a graphical approach based on sector bound nonlinearity and circle criterion for assessing the performance(degree of stability) of the linear SISO system associated with fuzzy logic controller. The degree of stability of the system is defined in terms of its gain and phase margins as defined in Section 3.

  • PDF

Development of Driving Simulator Based on Washout Algorithm with Fuzzy Logic (퍼지에 기초한 워시아웃 알고리듬을 적용한 주행 시뮬레이터의 개발)

  • Jung, Ui-Jung;Song, Jae-Bok;Ko, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.654-659
    • /
    • 2001
  • In the virtual environment, reality can be enhanced by offering the motion based on a motion simulator in harmony with visual and auditory modalities. In this research, the Stewart platform based motion simulator has been developed. This motion simulator is driven by the electric motors, and offers the slightly wider workspace compared to the commercial available simulators. In order to compensate for the limited range of the motion platform, the washout filters with fixed coefficients have been usually adopted. In this paper the new approach is proposed to tune the filter coefficients based on the fuzzy logic on the real-time basis. It is shown that performance with the variable filter coefficients is better than that with the fixed ones. The driving simulator based on the bicycle dynamics was developed by integrating the motion simulator and graphic system.

  • PDF

A Study on Daily Cooling Load Forecast Using Fuzzy Logic (퍼지 논리를 이용한 일일 냉방부하 예측에 관한 연구)

  • 신관우;이윤섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.948-953
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system are possible solutions to settle this problem. In this study. the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested, then the method of forecasting the cooling load using fuzzy logic is suggested by simulating that the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated, and it is shown that the forecasted data approach to the actual data. Operating the ice-storage system by the forecast of cooling load with night electric power will improve the ice-storage system efficiency and reduce the peak electric power load during the summer season as a result.

A new Network Coordinator Node Design Selecting the Optimum Wireless Technology for Wireless Body Area Networks

  • Calhan, Ali;Atmaca, Sedat
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1077-1093
    • /
    • 2013
  • This paper proposes a new network coordinator node design to select the most suitable wireless technology for WBANs by using fuzzy logic. Its goal is to select a wireless communication technology available considering the user/application requirements and network conditions. A WBAN is composed of a set of sensors placed in, on, or around human body, which monitors the human body functions and the surrounding environment. In an effort to send sensor readings from human body to medical center or a station, a WBAN needs to stay connected to a local or a wide area network by using various wireless communication technologies. Nowadays, several wireless networking technologies may be utilized in WLANs and/or WANs each of which is capable of sending WBAN sensor readings to the desired destination. Therefore, choosing the best serving wireless communications technology has critical importance to provide quality of service support and cost efficient connections for WBAN users. In this work, we have developed, modeled, and simulated some networking scenarios utilizing our fuzzy logic-based NCN by using OPNET and MATLAB. Besides, we have compared our proposed fuzzy logic based algorithm with widely used RSSI-based AP selection algorithm. The results obtained from the simulations show that the proposed approach provides appropriate outcomes for both the WBAN users and the overall network.

Mechanical properties of blended cements at elevated temperatures predicted using a fuzzy logic model

  • Beycioglu, Ahmet;Gultekin, Adil;Aruntas, Huseyin Yilmaz;Gencel, Osman;Dobiszewska, Magdalena;Brostow, Witold
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.247-255
    • /
    • 2017
  • This study aimed to develop a Rule Based Mamdani Type Fuzzy Logic (RBMFL) model to predict the flexural strengths and compressive strengths of blended cements under elevated temperatures. Clinoptilolite was used as cement substitution material in the experimental stage. Substitution ratios in the cement mortar mix designs were selected as 0% (reference), 5%, 10%, 15% and 20%. The data used in the modeling process were obtained experimentally, after mortar specimens having reached the age of 90 days and exposed to $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ temperatures for 3 hours. In the RBMFL model, temperature ($C^{\circ}$) and substitution ratio of clinoptilolite (%) were inputs while the compressive strengths and flexural strengths of mortars were outputs. Results were compared by using some statistical methods. Statistical comparison results showed that rule based Mamdani type fuzzy logic can be an alternative approach for the evaluation of the mechanical properties of concrete under elevated temperature.

Design of Fuzzy Logic Tuned PID Controller for Electric Vehicle based on IPMSM Using Flux-weakening

  • Rohan, Ali;Asghar, Furqan;Kim, Sung Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.451-459
    • /
    • 2018
  • This work presents an approach for modeling of electric vehicle considering the vehicle dynamics, drive train, rotational wheel and load dynamics. The system is composed of IPMSM (Interior Permanent Magnet Synchronous Motor) coupled with the wheels through a drive train. Generally, IPMSM is controlled by ordinary PID controllers. Performance of the ordinary PID controller is not satisfactory owing to the difficulties of optimal gain selections. To overcome this problem, a new type of fuzzy logic gain tuner for PID controllers of IPMSM is required. Therefore, in this paper fuzzy logic based gain tuning method for PID controller is proposed and compared with some previous control techniques for the better performance of electric vehicle with an optimal balance of acceleration, speed, travelling range, improved controller quality and response. The model was developed in MATLAB/Simulink, simulations were carried out and results were observed. The simulation results have proved that the proposed control system works well to remove the transient oscillations and assure better system response in all conditions.

A Genetic Algorithm Based Task Scheduling for Cloud Computing with Fuzzy logic

  • Singh, Avtar;Dutta, Kamlesh
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.367-372
    • /
    • 2013
  • Cloud computing technology has been developing at an increasing expansion rate. Today most of firms are using this technology, making improving the quality of service one of the most important issues. To achieve this, the system must operate efficiently with less idle time and without deteriorating the customer satisfaction. This paper focuses on enhancing the efficiency of a conventional Genetic Algorithm (GA) for task scheduling in cloud computing using Fuzzy Logic (FL). This study collected a group of task schedules and assessed the quality of each task schedule with the user expectation. The work iterates the best scheduling order genetic operations to make the optimal task schedule. General GA takes considerable time to find the correct scheduling order when all the fitness function parameters are the same. GA is an intuitive approach for solving problems because it covers all possible aspects of the problem. When this approach is combined with fuzzy logic (FL), it behaves like a human brain as a problem solver from an existing database (Memory). The present scheme compares GA with and without FL. Using FL, the proposed system at a 100, 400 and 1000 sample size*5 gave 70%, 57% and 47% better improvement in the task time compared to GA.

  • PDF

Intelligent Approach for Segmenting CT Lung Images Using Fuzzy Logic with Bitplane

  • Khan, Z. Faizal;Kannan, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1426-1436
    • /
    • 2014
  • In this article, we present a new grey scale image segmentation method based on Fuzzy logic and bitplane techniques which combines the bits of different bitplanes of a pixel inorder to increase the segmentation quality and to get a more reliable and accurate segmentation result. The proposed segmentation approach is conceptually different and explores a new strategy. Infact, our technique consists in combining many realizations of the image together inorder to increase the information quality and to get an optimal segmented image. For segmentation, we proceed in two steps. In the first step, we begin by identifying the bitplanes that represent the lungs clearly. For this purpose, the intensity value of a pixel is separated into bitplanes. In the second step, segmentation values are assigned for each bitplane based on membership table. The segmented values of foreground are combined and the segmentation values of background are combined. The algorithm is demonstrated through the medical computed tomography (CT) images. The segmentation accuracy of the proposed method is compared with two existing techniques. Satisfactory segmentation results have been obtained showing the effectiveness and superiority of the proposed method.

Fuzzy Logic Controller Design via Genetic Algorithm

  • Kwon, Oh-Kook;Wook Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.612-618
    • /
    • 1998
  • The success of a fuzzy logic control system solving any given problem critically depends on the architecture of th network. Various attempts have been made in optimizing its structure its structure using genetic algorithm automated designs. In a regular genetic algorithm , a difficulty exists which lies in the encoding of the problem by highly fit gene combinations of a fixed-length. This paper presents a new approach to structurally optimized designs of a fuzzy model. We use a messy genetic algorithm, whose main characteristics is the variable length of chromosomes. A messy genetic algorithms used to obtain structurally optimized fuzzy models. Structural optimization is regarded important before neural network based learning is switched into. We have applied the method to the exampled of a cart-pole balancing.

  • PDF

The Speed Control of the Switched ReI uctance Motor using Fuzzy PI Controller (퍼지PI 제어기를 사용한 스위치드 리럭턴스 전동기의 속도제어)

  • Ryoo, Hong-Je;Kim, Hack-Seong;Kim, Sei-Chan;Kang, Wook;Won, Chung-Yuen
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.209-216
    • /
    • 1996
  • This paper deals with the speed control of the switched reluctnace motor using fuzzy PI controller. A fuzzy logic control provides a good approach to nonlinear system because it does not require a detailed mathematical model to formulate the algorithm. The fuzzy PI controller is implemented by MCS80C196KB, a 16 bit one-chip microcontroller, and an EPROM is used for the commutation logic of the SRM. The simulation and experimental results show that the performance of the fuzzy PI controller is superior to that of the conventional PI controller in terms of response time, settling time and overshoot. In particular, the robustness of the system is largely improved.

  • PDF