• Title/Summary/Keyword: fuzzy learning

Search Result 980, Processing Time 0.037 seconds

퍼지신경망에 의한 퍼지회귀분석 : 품질평가 문제에의 응용

  • 권기택
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1996.10a
    • /
    • pp.211-216
    • /
    • 1996
  • This paper propose a fuzzy regression method using fuzzy neural networks when a membership value is attached to each input-output pair. First, an architecture of fuzzy nerual networks with fuzzy weights and fuzzy biases is shown. Next a cost function is defined using the fuzzy output from the fuzzy neural network and the corresponding target output with a membership value.A learning algorithm is derived from the cost function. The derived learning algorithm trains the fuzzy neural network so that the level set of the fuzzy output includes the target output. Last, the proposed method is applied to the quality evaluation problem of injection molding.

A Study on the Neuro-Fuzzy Control for an Inverted Pendulum System (도립진자 시스템의 뉴로-퍼지 제어에 관한 연구)

  • 소명옥;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.11-19
    • /
    • 1996
  • Recently, fuzzy and neural network techniques have been successfully applied to control of complex and ill-defined system in a wide variety of areas, such as robot, water purification, automatic train operation system and automatic container crane operation system, etc. In this paper, we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feedforward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand, feedforward neural networks provide salient features, such as learning and parallelism. In the proposed neuro-fuzzy controller, the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error backpropagation algorithm as a learning rule, while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally, the effectiveness of the proposed controller is verified through computer simulation of an inverted pendulum system.

  • PDF

A Study on Self-Directed Learning and The Test-Performing Abilities Assessment Methods by Using Fuzzy Logic (퍼지논리를 이용한 자기 주도적 학습 능력과 시험 능력 평가 방법)

  • Jung, Hwi-In;Yang, Hwarng-Kyu;Kim, Kwang-Baek
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.2
    • /
    • pp.77-84
    • /
    • 2004
  • In this thesis, We propose the self-directed learning and test-performing abilities assessment method to evaluate the learning and the test-performing abilities in which learners can not only control their own learning abilities for themselves, but also judge objectively learning and test-performing abilities. This method shows the membership degree of learning and test-performing abilities by using both the triangle-type membership function and the fuzzy logic. In addition, it gives the fuzzy grades to each item. The final membership degrees are calculated and the fuzzy grades are decided by the operation and composition of fuzzy relations on the membership degrees of learning and test-performing abilities. In this method, which is applicable to a writing subject for information searchers, learners are asked to analyse the membership degrees of the learning and test-performing abilities and the final fuzzy grades and to adjust a learning process for themselves.

  • PDF

A Study on Learning Evaluation Method by Using Fuzzy Theory (퍼지이론을 이용한 학습 평가 방법에 관한 연구)

  • 정창욱;남재현;김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.853-862
    • /
    • 2003
  • With the data base subject of first grade paper test of information handling technician, We proposed special method of evaluating learning ability directivity to judge that student can understand the contents of each chapter exactly or not, using assigned function and fuzzy deduction in this thesis. Using fuzzy logic, the proposed method of evaluating learning ability is dividing the presenting frequency of setting questions for examination about the subject of database into three rank and we can define this as the important. We applied the fuzzy assigned rate about the number of times of studying through the important of studying and the fuzzy assigned rate about formative evaluation to each of nine fuzzy deduction theories and than evaluated comprehension rate of learning. With the fuzzy grade about learning comprehension of each chapter and assigned rate about the score of generalized evaluation; We applied these two thing to the deduction rule of fuzzy and made it as defuzzifier and finally evaluated learning. We made that the result of eventual evaluating learning is very useful for learners to diagnosis learned contents by themselves and also it can be great material to judge that learners can get the goal of learning or not synthetically.

FUZZY HYPERCUBES: A New Inference Machines

  • Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.34-41
    • /
    • 1992
  • A robust and reliable learning and reasoning mechanism is addressed based upon fuzzy set theory and fuzzy associative memories. The mechanism stores a priori an initial knowledge base via approximate learning and utilizes this information for decision-making systems via fuzzy inferencing. We called this fuzzy computer architecture a 'fuzzy hypercube' processing all the rules in one clock period in parallel. Fuzzy hypercubes can be applied to control of a class of complex and highly nonlinear systems which suffer from vagueness uncertainty. Moreover, evidential aspects of a fuzzy hypercube are treated to assess the degree of certainty or reliability together with parameter sensitivity.

  • PDF

Adaptive Control of Robot Manipulator using Neuvo-Fuzzy Controller

  • Park, Se-Jun;Yang, Seung-Hyuk;Yang, Tae-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.4-161
    • /
    • 2001
  • This paper presents adaptive control of robot manipulator using neuro-fuzzy controller Fuzzy logic is control incorrect system without correct mathematical modeling. And, neural network has learning ability, error interpolation ability of information distributed data processing, robustness for distortion and adaptive ability. To reduce the number of fuzzy rules of the FLS(fuzzy logic system), we consider the properties of robot dynamic. In fuzzy logic, speciality and optimization of rule-base creation using learning ability of neural network. This paper presents control of robot manipulator using neuro-fuzzy controller. In proposed controller, fuzzy input is trajectory following error and trajectory following error differential ...

  • PDF

A ESLF-LEATNING FUZZY CONTROLLER WITH A FUZZY APPROXIMATION OF INVERSE MODELING

  • Seo, Y.R.;Chung, C.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.243-246
    • /
    • 1994
  • In this paper, a self-learning fuzzy controller is designed with a fuzzy approximation of an inverse model. The aim of an identification is to find an input command which is control of a system output. It is intuitional and easy to use a classical adaptive inverse modeling method for the identification, but it is difficult and complex to implement it. This problem can be solved with a fuzzy approximation of an inverse modeling. The fuzzy logic effectively represents the complex phenomena of the real world. Also fuzzy system could be represented by the neural network that is useful for a learning structure. The rule of a fuzzy inverse model is modified by the gradient descent method. The goal is to be obtained that makes the design of fuzzy controller less complex, and then this self-learning fuzz controller can be used for nonlinear dynamic system. We have applied this scheme to a nonlinear Ball and Beam system.

  • PDF

A study on the improvement of fuzzy ARTMAP for pattern recognition problems (Fuzzy ARTMAP 신경회로망의 패턴 인식율 개선에 관한 연구)

  • 이재설;전종로;이충웅
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.117-123
    • /
    • 1996
  • In this paper, we present a new learning method for the fuzzy ARTMAP which is effective for the noisy input patterns. Conventional fuzzy ARTMAP employs only fuzzy AND operation between input vector and weight vector in learning both top-down and bottom-up weight vectors. This fuzzy AND operation causes excessive update of the weight vector in the noisy input environment. As a result, the number of spurious categories are increased and the recognition ratio is reduced. To solve these problems, we propose a new method in updating the weight vectors: the top-down weight vectors of the fuzzy ART system are updated using weighted average of the input vector and the weight vector itself, and the bottom-up weight vectors are updated using fuzzy AND operation between the updated top-down weitht vector and bottom-up weight vector itself. The weighted average prevents the excessive update of the weight vectors and the fuzzy AND operation renders the learning fast and stble. Simulation results show that the proposed method reduces the generation of spurious categories and increases the recognition ratio in the noisy input environment.

  • PDF

Learning Performance Improvement of Fuzzy RBF Network (퍼지 RBF 네트워크의 학습 성능 개선)

  • Kim Kwang-Baek
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.369-376
    • /
    • 2006
  • In this paper, we propose an improved fuzzy RBF network which dynamically adjusts the rate of learning by applying the Delta-bar-Delta algorithm in order to improve the learning performance of fuzzy RBF networks. The proposed learning algorithm, which combines the fuzzy C-Means algorithm with the generalized delta learning method, improves its learning performance by dynamically adjusting the rate of learning. The adjustment of the learning rate is achieved by self-generating middle-layered nodes and by applying the Delta-bar-Delta algorithm to the generalized delta learning method for the learning of middle and output layers. To evaluate the learning performance of the proposed RBF network, we used 40 identifiers extracted from a container image as the training data. Our experimental results show that the proposed method consumes less training time and improves the convergence of teaming, compared to the conventional ART2-based RBF network and fuzzy RBF network.

  • PDF

Adaptive fuzzy learning control for a class of second order nonlinear dynamic systems

  • Park, B.H.;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.103-106
    • /
    • 1996
  • This paper presents an iterative fuzzy learning control scheme which is applicable to a broad class of nonlinear systems. The control scheme achieves system stability and boundedness by using the linear feedback plus adaptive fuzzy controller and achieves precise tracking by using the iterative learning rules. The switching mode control unit is added to the adaptive fuzzy controller in order to compensate for the error that has been inevitably introduced from the fuzzy approximation of the nonlinear part. It also obviates any supervisory control action in the adaptive fuzzy controller which normally requires high gain signal. The learning control algorithm obviates any output derivative terms which are vulnerable to noise.

  • PDF