• Title/Summary/Keyword: fuzzy interpolation

Search Result 59, Processing Time 0.038 seconds

Some Properties of the Fuzzy Rule Table for Polynomials of two Variables

  • Ryou, Jeong-A;Chung, Sei-Young;Moon, Byung-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.86-89
    • /
    • 2000
  • In this paper, we consider a fuzzy system representation for polynomials of two variables. The representation we use is an exact transformation of the corresponding cubic spline interpolation function. We examine some of the properties of their fuzzy rule tables md prove that the rule table is symmetric or antisymmetric depending on whether the polynomial is symmetric or antisymmetric. A few examples are included to verify our proof. These results not only provide some insights on properties of the cubic spline interpolation coefficients but also provide some help in setting up fuzzy rule tables for functions of two variables.

  • PDF

A Fuzzy Controller based on Fuzzy Relations (퍼지관계를 이용한 퍼지제어기의 설계)

  • Lee, Jihong;Moon, Jumsaeng
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.58-67
    • /
    • 1993
  • Instead of Cartesian product in combining multiple input variables for fuzzy logic controllers, a fuzzy controller using fuzzy relations in inference procedure is proposed. Moreover, a technique is proposed by which conventional fuzzy control rules are transformed into the forms including fuzzy relations. It will be shown through several examples that the proposed technique gives smoother interpolation than conventional ones.

  • PDF

A Fuzzy Controller using Fuzzy Relations on Input Variables

  • Lee, Jihong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.895-898
    • /
    • 1993
  • Instead of Cartesian product for in combining multiple inputs for fuzzy logic controllers, a method using fuzzy relation in inference is proposed. Moreover, fuzzy control rule described by fuzzy relations is derived from given conventional fuzzy control rule by fitting concept. It will be shown through several examples that the proposed technique gives smoother interpolation than conventional ones.

  • PDF

Nonlinear Interpolation of Images using fuzzy inference (퍼지 추론을 이용한 비선형 영상 보간)

  • Kang, Keum-Boo;Lee, Jong-Soo;Yang, Woo-S.
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.168-177
    • /
    • 1999
  • In this paper, we present a new interpolation scheme for image enhancement using fuzzy inference. In general, interpolation techniques are based on linear operators which are essentially lowpass filters, hence, they tend to blur fine details in the original image. In our approach, the operator itself balances the strength of its sharpening and noise suppressing components according to the Properties of the input image data.

  • PDF

Design of a Sliding Mode Controller with Nonlinear Boundary Transfer Characteristics

  • Kim, Yoo K.;Gi J. Jeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.164.2-164
    • /
    • 2001
  • Sliding mode control (SMC) with variable nonlinear boundary layer is proposed. Two Fuzzy logic controllers (FLCs) are used to decide both boundary layer thickness and nonlinear interpolation using sigmoid function in the boundary layer. The nonlinear interpolation in the boundary layer suing FLC reduces stead state error and chattering. Sigmoid function is used to nonlinear interpolation in the boundary layer sigmoid function parameter with FLC. To demonstrate its performance, the Proposed control algorithm is applied to a simple nonlinear system.

  • PDF

A Semiconductor Defect Inspection Using Fuzzy Reasoning Method (퍼지 추론 기법을 이용한 반도체 불량 검사)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1551-1556
    • /
    • 2010
  • In this paper, we propose a new inspection method that applies fuzzy reasoning method considering the difference of brightness and intensity of illumination by bend together. In the preprocessing phase, we compensate the degree of semiconductor images with bilinear interpolation and moment-rotation. Then we use fuzzy reasoning method with the difference of brightness from error region by pattern matching and the difference of intensity of illumination from bends. Then the result is difuzzified and applied to the final inspection process. In experiment which uses 30 real world semiconductors with strait shots and side shots, the proposed method successfully discard the false positive identified by conventional brightness comparison only method without any loss of misidentification.

Distance Estimation Method using Enhanced Adaptive Fuzzy Strong Tracking Kalman Filter Based on Stereo Vision (스테레오 비전에서 향상된 적응형 퍼지 칼만 필터를 이용한 거리 추정 기법)

  • Lim, Young-Chul;Lee, Chung-Hee;Kwon, Soon;Lee, Jong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.108-116
    • /
    • 2008
  • In this paper, we propose an algorithm that can estimate the distance using disparity based on stereo vision system, even though the obstacle is located in long ranges as well as short ranges. We use sub-pixel interpolation to minimize quantization errors which deteriorate the distance accuracy when calculating the distance with integer disparity, and also we use enhanced adaptive fuzzy strong tracking Kalman filter(EAFSTKF) to improve the distance accuracy and track the path optimally. The proposed method can solve the divergence problem caused by nonlinear dynamics such as various vehicle movements in the conventional Kalman filter(CKF), and also enhance the distance accuracy and reliability. Our simulation results show that the performance of our method improves by about 13.5% compared to other methods in point of root mean square error rate(RMSER).

Dynamic response uncertainty analysis of vehicle-track coupling system with fuzzy variables

  • Ye, Ling;Chen, Hua-Peng;Zhou, Hang;Wang, Sheng-Nan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.519-527
    • /
    • 2020
  • Dynamic analysis of a vehicle-track coupling system is important to structural design, damage detection and condition assessment of the structural system. Deterministic analysis of the vehicle-track coupling system has been extensively studied in the past, however, the structural parameters of the coupling system have uncertainties in engineering practices. It is essential to treat the parameters of the vehicle-track coupling system with consideration of uncertainties. In this paper, a method for predicting the bounds of the vehicle-track coupling system responses with uncertain parameters is presented. The uncertain system parameters are modeled as fuzzy variables instead of conventional random variables with known probability distributions. Then, the dynamic response functions of the coupling system are transformed into a component function based on the high dimensional representation approximation. The Lagrange interpolation method is used to approximate the component function. Finally, the bounds of the system's dynamic responses can be predicted by using Monte Carlo method for the interpolation polynomials of the Lagrange interpolation function. A numerical example is introduced to illustrate the ability of the proposed method to predict the bounds of the system's dynamic responses, and the results are compared with the direct Monte Carlo method. The results show that the proposed method is effective and efficient to predict the bounds of the system's dynamic responses with fuzzy variables.

A Method for Propagating Fuzzy Concepts through Fuzzy IF-THEN-ELSE Rules

  • Kim, Doohyun;Lim, Younghwan;Kim, Jin H.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.12 no.2
    • /
    • pp.21-35
    • /
    • 1987
  • This paper presents a method for propagating fuzzy concepts through fuzzy IF-THEN-ELSE rules. A fuzzy IF-THEN-ELSE rule consists of a set of fuzzy condition and conclusion pairs. These pairs assumed to contain informations about a fuzzy mapping from fuzzy concepts of condition parts to the fuzzy concepts of conclusion parts. Conventionally, vectors are used to define fuzzy concepts and matrices are used to define a fuzzy mapping between fuzzy conditions and conclusions. This approach, however, does not satisfy the existing condition property, i.e., when a fuzzy input data exactly matches to a fuzzy condition, fuzzy output data should be mapped to a corresponding fuzzy conclusion. Alternatively, we propose a parameterized approach in which every fuzzy concept is described by a parameterized standard function, including fuzzy conditions and fuzzy conclusions. A fuzzy IF-THEN-ELSE rule takes the parameterized fuzzy concept as an input, and produces a standard function with new parameters as an output. New parameters are determined by a parameterwise interpolation. That is, each output parameters are determined by interpolating parameters of the same class contained in fuzzy conclusions. Obviously, the proposed scheme always satisfies the existing condition property.

  • PDF

A Novel Key Sharing Fuzzy Vault Scheme

  • You, Lin;Wang, Yuna;Chen, Yulei;Deng, Qi;Zhang, Huanhuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4585-4602
    • /
    • 2016
  • A novel key sharing fuzzy vault scheme is proposed based on the classic fuzzy vault and the Diffie-Hellman key exchange protocol. In this proposed scheme, two users cooperatively build their fuzzy vault for their shared key using their own biometrics. Either of the users can use their own biometrics to unlock the fuzzy vault with the help of the other to get their shared key without risk of disclosure of their biometrics. Thus, they can unlock the fuzzy vault cooperatively. The security of our scheme is based on the security of the classic fuzzy vault scheme, one-way hash function and the discrete logarithm problem in a given finite group.