• Title/Summary/Keyword: fuzzy inference

Search Result 1,296, Processing Time 0.024 seconds

Development of Maneuvering Simulator for PERESTROIKA Catamaran using Fuzzy Inference Technique

  • Lee, Joon-Tark;Ji, Seok--Jun;Choi, Woo--Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.192-199
    • /
    • 2004
  • Navigation simulators have been used in many marine schools and manne training centers since the early 1960's. But these simulators were very expens~ve and were almost limited only in one engine system. In this paper, a catamaran with twin engine system. controlled by two remote control levers and its economic simulator based on a personal computer shall be introduced. One of the main features of catamaran is to control variously its progressing direction. In the static state, a catamaran can move into all the directions and in the dynamic state, ship can change immediately the heading and speed. Although a good navigator can skillfully operate one engine system, it is difficult to control smoothly the catamaran of twin engine system without any threat for the safety of passengers. Thus. in order to bring up the expert navigators. the development of a simulator which makes the training effective is necessary, Therefore, in this paper, a Fuzzy Inference Technique based Maneuvering Simulator for catamaran with twin engine system was developed. In general. in order to develop a catamaran simulator for effective training, first of all. its mathematical model must be acquired. According to the acquired system modeling. the dynamics of simulator is determined, But the proposed technique can omit a complex and tedious mathematical modeling procedures by using the fuzzy inference, which dependent upon only experiences of an expert and can design an efficient training program for unskillful navigators. This developed simulator was consisted of two fuzzy inference routines and two remote control levers, and was focused on effective training of navigators for the safe maneuvering to avoid a collision in a harbor.

Word Recognition using Fuzzy Inference based on LPC (선형예측계수에 기초한 퍼지추론 단어 인식)

  • Choi, Seung-Ho;Kim, Hyeong-Geun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.32-41
    • /
    • 1994
  • To solve the frequency variation of speech patterns which consist of LPC sequences, new membership function view from LPC, spectrum and the relations between the order of LPC and spectrum is proposed. To solve the time variation, multi-secation equi-segmentation method which equally divide the speech section into several section are applied. False recognition mainly occur at time when the same syllable is placed at the same utterance. To reduce the error, fuzzy inference is executed using the proposed membership function and weights are assigned into sectional certainty and then the decision method for recognized the section up to the third candidate. To testify the validation of this method, we experimented the recognition test of 28 DDD area names. The recognition rate of the fuzzy inference by the triangle membership function is $92\%$. That of the combined method of the fuzzy inference and the dicision method is $92.9\%$ and that of fuzzy inference by the proposed membership funtion is $93.8\%$.

  • PDF

Fuzzy Rulebase Application for Estimation of Snow Accretion on Power Lines and Deicing Countermeasure Plan (퍼지 룰베이스에 의한 전선착설 예측 및 대책 지원 기법)

  • 최규형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.782-788
    • /
    • 2003
  • Making deicing countermeasure plan against snow accretion on power line is a very complicated problem, which should take into account both the possibility of accidents due to snow accretion on power line and the stable operation of power system. As knowledge engineering can be a good solution to this field of problems, a prototype expert system to assist power system operators in forecasting snow accretion on power lines and making a list of all the feasible and effective deicing countermeasures has been developed. The system has been remodelled into a fuzzy expert system by adopting fuzzy rulebase and fuzzy inference method to systematically process the fuzziness included in the heuristic knowledges. Simulation results based on the past snow accretion accident data show that the proposed system is very promising.

Two Models to Assess Fuzzy Risk of Natural Disaster in China

  • Chongfu, Huang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.16-26
    • /
    • 1997
  • China is one of the few countries where natural disaster strike frequently and cause heavy damage. In this paper, we mathematically develop two models to assess fuzzy risk of natural disaster in China. One is to assess the risk based on database of historical disaster effects by using information diffusion method relevant in fuzzy information analysis. In another model, we give an overview over advanced method to calculate the risk of release, exposure and consequence assessent, where information distribution technique is used to calculate basic fuzzy relationships showing historical experience of natural disasters, and fuzzy approximate inference is employed to study loss risk based on these basic relationships. We also present an examples to show how to use the first model. Result show that the model is effective for natural disaster risk assessment.

  • PDF

The Design and application of Fuzzy control System using T-operators (T-operators를 이용한 Fuzzy Control System의 설계 및 응용)

  • Kim, Il;Lee, Sang-Bae
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.87-96
    • /
    • 1996
  • In this paper, The Fuzzy Logic Controller based on T-operators is designed. Some typical T-operators and their mathematical properties are studied. A generalized fuzzy inference model is proposed by introducing the general notion of T-operators into the conventional one which is based only on the Min and Max operators. Fuzzy Logic Control algorithms based on the T-operators are suggested. Then, by computer simulations, the effect of various T-operators on the performance of the fuzzy logic controller are studied. The purpose of these simulation studies were to observe the flexibility and system responses using the processed class of T-operators in the fuzzy inference mechanisms. This observation was made on parameters such as speed of reponses, steady-state behavior and non oscillatory responses.

  • PDF

Optimal Fuzzy Models with the Aid of SAHN-based Algorithm

  • Lee Jong-Seok;Jang Kyung-Won;Ahn Tae-Chon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • In this paper, we have presented a Sequential Agglomerative Hierarchical Nested (SAHN) algorithm-based data clustering method in fuzzy inference system to achieve optimal performance of fuzzy model. SAHN-based algorithm is used to give possible range of number of clusters with cluster centers for the system identification. The axes of membership functions of this fuzzy model are optimized by using cluster centers obtained from clustering method and the consequence parameters of the fuzzy model are identified by standard least square method. Finally, in this paper, we have observed our model's output performance using the Box and Jenkins's gas furnace data and Sugeno's non-linear process data.

Applications of Soft Computing Techniques in Response Surface Based Approximate Optimization

  • Lee, Jongsoo;Kim, Seungjin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1132-1142
    • /
    • 2001
  • The paper describes the construction of global function approximation models for use in design optimization via global search techniques such as genetic algorithms. Two different approximation methods referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the training data is not sufficiently provided or uncertain information may be included in design process. Fuzzy inference system is the central system for of identifying the input/output relationship in both methods. The paper introduces the general procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and presents their generalization capabilities in terms of a number of fuzzy rules and training data with application to a three-bar truss optimization.

  • PDF

Fuzzy Logic Control With Predictive Neural Network

  • Jung, Sung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.285-289
    • /
    • 1996
  • Fuzzy logic controllers have been shown better performance than conventional ones especially in highly nonlinear plants. These results are caused by the nonlinear fuzzy rules were not sufficient to cope with significant uncertainty of the plants and environment. Moreover, it is hard to make fuzzy rules consistent and complete. In this paper, we employed a predictive neural network to enhance the nonlinear inference capability. The predictive neural network generates predictive outputs of a controlled plant using the current and past outputs and current inputs. These predictive outputs are used in terms of fuzzy rules in fuzzy inferencing. From experiments, we found that the predictive term of fuzzy rules enhanced the inference capability of the controller. This predictive neural network can also help the controller cope with uncertainty of plants or environment by on-line learning.

  • PDF

Design of Artificial Neural Networks for Fuzzy Control System (퍼지제어 시스템을 위한 인공신경망 설계)

  • Jang, Mun-Seok;Jang, Deok-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.5
    • /
    • pp.626-633
    • /
    • 1995
  • It is vary hard to identify the fuzzy rules and tune the membership functions of the fuzzy inference in fuzzy systems modeling, We propose a fuzzy neural network model which can automatically identify the fuzzy rules and tune the membership functions of fuzzy inference simultaneously using artificial neural networks, and modify backpropagation algorithm for improving the convergence. The proposed method is verified by the simulation for a robot manipulator.

  • PDF

Fault Detection of Transmission Line using Neuro-fuzzy Scheme (뉴로-퍼지기법을 이용한 송전선로의 고장검출)

  • Jeon, B.J.;Park, C.W.;Shin, M.C.;Lee, B.K.;Kweon, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1046-1049
    • /
    • 1998
  • This paper deals with the new fault detection technique for transmission line using Neuro-fuzzy Scheme. Neuro-fuzzy Scheme is ANFIS(Adaptive-network Fuzzy Inference System) based on fusion of fuzzy logic and neural networks. The proposed scheme has five layers. Each layer is the component of fuzzy Inference system and performs different action. Using learning method of neural network, fuzzy premise and consequent parameters is tuned properly.

  • PDF