• 제목/요약/키워드: fuzzy gain

검색결과 315건 처리시간 0.036초

채터링 감소를 위한 퍼지 슬라이딩 모드 제어 (Fuzzy-Sliding Mode C.ontrol for Chattering Reduction)

  • 이태경;문지운;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.72-72
    • /
    • 2000
  • This paper presents a methodology combining sliding mode control and fuzzy control to tune the boundary layer and input gain according to the system state. The equivalent control is designed such that the nominal system exhibits desirable dynamics, The robust control with fuzzy self-tuning is then developed to guarantee the reaching condition and reduce chattering phenomenon in the presence of parameter and disturbance uncertainties.

  • PDF

모델 레퍼런스 적응 퍼지 제어기 구조에 관한 연구 (A study on a structure of a model reference adaptive fuzzy controller(MRAFC))

  • 이기범;최종수;주문갑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.512-514
    • /
    • 1998
  • The paper presents a model reference adaptive control containing a fuzzy algorithm for tuning the gain coefficient which adjusts the level of the fuzzy controller output. The synthesis of a fuzzy tuning algorithm has been performed for the inverted pendulum system. The computer simulation results have proved the efficiency of the proposed method, showing stable system responses.

  • PDF

A Study on Implementation of Stable Interaction Control System

  • Yongteak Lim;Kim, Seungwoo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.608-611
    • /
    • 2000
  • We introduce Adaptive Fuzzy Impedance Controller for position and force control when robot contact with environment. Because Robot and environment was always effected by nonlinear conditions, it need to deal with parameter’s uncertainty. For solving this problem, it induced Fuzzy System in Impedance Control so fuzzy system is impedance’s stiffness gain. We apply adaptive fuzzy impedance controller in One-Link Robot System, it shows the good performance on desired position control and force control about contacting with arbitrarily environment.

  • PDF

영구자석 동기전동기의 벡터 제어를 위한 퍼지 각가속도 관측기 기반의 퍼지 속도제어기 (Fuzzy Speed Regulator based on a Fuzzy Acceleration Observer for Vector Control of Permanent Magnet Synchronous Motors)

  • 정진우
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.330-337
    • /
    • 2011
  • This paper presents a new fuzzy speed controller based on a fuzzy angular acceleration observer to realize a robust speed control of permanent magnet synchronous motors(PMSM). The proposed speed controller needs the information of the angular acceleration, thus the first-order fuzzy acceleration observer is designed. The LMI existence condition is given for the proposed fuzzy speed controller, and the gain matrices of the controller are calculated. It is verified that the augmented control system consisting of the fuzzy speed controller and the fuzzy acceleration observer is mathematically stable. To validate the effectiveness of the proposed acceleration observer-based fuzzy speed controller, the simulation and experimental results are shown under motor parameter variations. It is definitely proven that the proposed control scheme can precisely track the speed of a permanent magnet synchronous motor.

Dialogical design of fuzzy controller using rough grasp of process property

  • Ishimaru, Naoyuki;Ishimoto, Tutomu;Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.265-271
    • /
    • 1992
  • It is the purpose of this paper to present a dialogical designing method for control system using a rough grasp of the unknown process property. We deal with a single-input single-output feedback control system with a fuzzy controller. The process property is roughly estimated by the step response, and the fuzzy controller is interactively modified according to the operator's requests. The modifying rules mainly derived from computer simulation are useful for almost every process, such as an unstable process and a non-minimum phase process. The fuzzy controller is tuned by taking notice of four characteristics of the step response: (1) rising time, (2) overshoot, (3) amplitude and (4) period of vibration. The tuning position of the controller is fourfold: (1) antecedent gain factor GE or GCE, (2) consequent gain factor GDU, (3) arrangement of the antecedent fuzzy labels and (4) arrangement of the control rules. The rules give an instance to the respective items of the controller in an effective order. The modified fuzzy PI controller realizes a good response of a stable process. However, because the GDU tuning becomes difficult for the unstable process, it is necessary to evaluate the stability of the process from the initial step response. The fuzzy PI controller is applied to the process whose initial step response converges with GDU tuning. The fuzzy PI controller with modified sampling time is applied to the process whose step response converges under the repeated application of the GDU tuning. The fuzzy PD controller is applied to the process whose step response never converges by the GDU tuning.

  • PDF

Design of Fuzzy PD Depth Controller for an AUV

  • Loc, Mai Ba;Choi, Hyeung-Sik;Kim, Joon-Young;Kim, Yong-Hwan;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.16-21
    • /
    • 2013
  • This paper presents a design of fuzzy PD depth controller for the autonomous underwater vehicle entitled KAUV-1. The vehicle is shaped like a torpedo with light weight and small size and used for marine exploration and monitoring. The KAUV-1 has a unique ducted propeller located at aft end with yawing actuation acting as a rudder. For depth control, the KAUV-1 uses a mass shifter mechanism to change its center of gravity, consequently, can control pitch angle and depth of the vehicle. A design of classical PD depth controller for the KAUV-1 was presented and analyzed. However, it has inherent drawback of gains, which is their values are fixed. Meanwhile, in different operation modes, vehicle dynamics might have different effects on the behavior of the vehicle. In this reason, control gains need to be appropriately changed according to vehicle operating states for better performance. This paper presents a self-tuning gain for depth controller using the fuzzy logic method which is based on the classical PD controller. The self-tuning gains are outputs of fuzzy logic blocks. The performance of the self-tuning gain controller is simulated using Matlab/Simulink and is compared with that of the classical PD controller.

고이득 관측기를 이용한 터보제트 엔진의 PID 퍼지 추론 가속도 제어기 설계 (Design of PID Type Fuzzy Logic Acceleration Controller for Turbojet Engine Using High-gain Observer)

  • 지민석;김대기;홍교영;안동만;홍승범
    • 한국항행학회논문지
    • /
    • 제17권1호
    • /
    • pp.107-114
    • /
    • 2013
  • 본 논문에서는 무인항공기 터보제트 엔진의 가속도를 제어하는 제어기를 제안한다. 압축기 회전 속도를 추정하기 위해 고이득 관측기를 사용하고 퍼지 추론 기법과 PID 제어 알고리즘을 적용하는 터보제트 엔진 제어기를 설계한다. 터보제트 엔진의 가 감속 시 서지현상과 flame-out 현상을 방지하기 위해 연료 유량 제어 입력을 퍼지 PID 제어기로 생성한다. 기준 가속도를 설정하고 연료유량 제어를 퍼지추론에 의해 정하도록 한다. 제안된 제어기의 성능을 확인하기 위해 MATLAB을 사용한 컴퓨터 시뮬레이션을 수행하였다.

선형 영구자석형 동기 전동기의 Fuzzy 기반 Self-Tuning PI 속도 제어기에 관한 연구 (A study of Self-Tuning PI Speed Controller Based on Fuzzy for Permanent Magnet Linear Synchronous Motor)

  • 이진하;최철;김철우
    • 전력전자학회논문지
    • /
    • 제9권6호
    • /
    • pp.602-611
    • /
    • 2004
  • 본 논문에서는 속도 오차의 최소화와 안정된 응답 특성을 가진 선형 영구자석형 동기 전동기를 이용한 시스템을 구성하기 위해서 속도 오차와 속도 오차의 미분항을 입력 변수로 하고 PI 룩업-테이블(look up table)을 이용한 퍼지(fuzzy) 기반 자기동조(self-tuning) PI 속도 제어기를 제안 하였다. 부하가 변동되는 제어 환경이나 시스템에 비선형성 외란이 가해지는 경우, 고정된 최초의 이득 설정 또는 NC 공작기에서 사용되는 속도에 따른 가변이득 조절 방식만으로는 원하는 제어특성을 기대하기가 어렵다. 본 연구의 타당성을 검증하기 위해서 기존의 고정이득 방식 및 속도 변동량에 따른 가변이득 방식을 제안한 방식과 시뮬레이션 및 4상한 운전 실험을 통해 비교함으로써 제안된 방식이 기존의 방식들보다 안정되고 빠른 속도 응답특성을 가짐을 확인하였다.

퍼지게인 스케쥴링 PID 제어이론을 이용한 동적 위치 유지 제어기법에 관한 연구 (A Study on the Dynamic Positioning Control Algorithm Using Fuzzy Gain Scheduling PID Control Theory)

  • 전마로;김희수;김재학;김수정;송순석;김상현
    • 대한조선학회논문집
    • /
    • 제54권2호
    • /
    • pp.102-112
    • /
    • 2017
  • Many studies on dynamic positioning control algorithms using fixed feedback gains have been carried out to improve station keeping performance of dynamically positioned vessels. However, the control algorithms have disadvantages in that it can not cope with changes in environmental disturbances and response characteristics of vessels motion in real time. In this paper, the Fuzzy Gain Scheduling - PID(FGS - PID) control algorithm that can tune PID gains in real time was proposed. The FGS - PID controller that consists of fuzzy system and a PID controller uses weighted values of PID gains from fuzzy system and fixed PID gains from Ziegler - Nichols method to tune final PID gains in real time. Firstly, FGS - PID controller, control allocation algorithm, FPSO and environmental disturbances were modeled using Matlab/Simulink to evaluate station keeping performance of the proposed control algorithm. In addition, simulations that keep positions and a heading angle of vessel with wind, wave, current disturbances were carried out. From simulation results, the FGS - PID controller was confirmed to have better performances of keeping positions and a heading angle and consuming power than those of the PID controller. As a consequence, the proposed FGS - PID controller in this paper was validated to have more effectiveness to keep position and heading angle than that of PID controller.

Adaptive Intelligent Control of Inverted Pendulum Using Immune Fuzzy Fusion

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2372-2377
    • /
    • 2003
  • Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the PID controller has to be manually tuned by trial and error. This paper suggests control approaches by immune fuzzy for the nonlinear control system inverted pendulum, through computer simulation. This paper defines relationship state variables $x,{\dot{x}},{\theta},\dot{\theta}$ using immune fuzzy and applied its results to stability.

  • PDF