• Title/Summary/Keyword: fuzzy color filter

Search Result 27, Processing Time 0.02 seconds

Extraction of Facial Region Using Fuzzy Color Filter (퍼지 색상 필터를 이용한 얼굴 영역 추출)

  • Kim, M.H.;Park, J.B.;Jung, K.H.;Joo, Y.H.;Lee, J.;Cho, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.147-149
    • /
    • 2004
  • There are no authentic solutions in a face region extraction problem though it is an important part of pattern recognition and has diverse application fields. It is not easy to develop the facial region extraction algorithm because the facial image is very sensitive according to age, sex, and illumination. In this paper, to solve these difficulties, a fuzzy color filer based on the facial region extraction algorithm is proposed. The fuzzy color filter makes the robust facial region extraction enable by modeling the skin color. Especially, it is robust in facial region extraction with various illuminations. In addition, to identify the fuzzy color filter, a linear matrix inequality(LMI) optimization method is used. Finally, the simulation result is given to confirm the superiority of the proposed algorithm.

  • PDF

Metal Object Detection System For Drive Inside Protection (내부 운전자 보호를 위한 금속 물체 탐지 시스템)

  • Kim, Jin-Kyu;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.609-614
    • /
    • 2009
  • The purpose of this paper is to design the metal object detection system for drive inside protection. To do this, we propose the algorithm for designing the color filter that can detect the metal object using fuzzy theory and the algorithm for detecting area of the driver's face using fuzzy skin color filter. Also, by using the proposed algorithm, we propose the algorithm for detecting the metallic object candidate regions. And, the metallic object color filter is then applied to find the candidate regions. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

A Fuzzy Impulse Noise Filter Based on Boundary Discriminative Noise Detection

  • Verma, Om Prakash;Singh, Shweta
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2013
  • The paper presents a fuzzy based impulse noise filter for both gray scale and color images. The proposed approach is based on the technique of boundary discriminative noise detection. The algorithm is a multi-step process comprising detection, filtering and color correction stages. The detection procedure classifies the pixels as corrupted and uncorrupted by computing decision boundaries, which are fuzzified to improve the outputs obtained. In the case of color images, a correction term is added by examining the interactions between the color components for further improvement. Quantitative and qualitative analysis, performed on standard gray scale and color image, shows improved performance of the proposed technique over existing state-of-the-art algorithms in terms of Peak Signal to Noise Ratio (PSNR) and color difference metrics. The analysis proves the applicability of the proposed algorithm to random valued impulse noise.

An efficient Color Edge Fuzzy Interpolation Method for improving a Chromatic Aberration (색수차 개선을 위한 효율적인 컬러 에지 퍼지 보간 방법)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.59-70
    • /
    • 2010
  • Each pixels become got pixel value for color of only one from among colors because of bayer pattern that light receiving device of image sensor which is used in HHP and digital camera writes only one color. Information of the missing pixels could infer perfect color image from using information of neighbor pixels by using CFA(Color Filter Array). In this paper, we derive relation between the average of the data from the light receiving device of image sensor and each color channel data. And by using this relation, a new efficient edge color fuzzy method for color interpolation is proposed. Also, missing luminance signal channel interpolation was fuzzy interpolation along any edges direction for reducing color noise and interpolating efficiently it. And in this paper, the proposed method has been proved improving average 2.4dB than the conventional method by using PSNR. Also, resolution of the image of the proposed method was similar to the original image by visual images, we has been verified to be decreased a chromatic aberration than image of conventional algorithms with simulation result.

Color Image Processing using Fuzzy Cluster Filters and Weighted Vector $\alpha$-trimmed Mean Filter (퍼지 클러스터 필터와 가중화 된 벡터 $\alpha$-trimmed 평균 필터를 이용한 칼라 영상처리)

  • 엄경배;이준환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1731-1741
    • /
    • 1999
  • Color images are often corrupted by the noise due to noisy sensors or channel transmission errors. Some filters such as vector media and vector $\alpha$-trimmed mean filter have bee used for color noise removal. In this paper, We propose the fuzzy cluster filters based on the possibilistic c-means clustering, because the possibilistic c-means clustering can get robust memberships in noisy environments. Also, we propose weighted vector $\alpha$-trimmed mean filter to improve the conventional vector $\alpha$-trimmed mean filter. In this filter, the central data are more weighted than the outlying data. In this paper, we implemented the color noise generator to evaluate the performance of the proposed filters in the color noise environments. The NCD measure and visual measure by human observer are used for evaluation the performance of the proposed filters. In the experiment, proposed fuzzy cluster filters in the sense of NCD measure gave the best performance over conventional filters in the mixed noise. Simulation results showed that proposed weighted vector $\alpha$-trimmed mean filters better than the conventional vector $\alpha$-trimmed mean filter in any kinds of noise.

  • PDF

Conditional fuzzy cluster filter for color image enhancement under the mixed color noise (혼합된 칼라 잡음하에서 칼라 영상 향상을 위한 조건적인 퍼지 클러스터 필터)

  • Eum, Kyoung-Bae;Han, Seo-Won;Lee, Joon-Whoan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3718-3726
    • /
    • 1999
  • Color image is more effective than gray one in human visual perception. Therefore, color image processing becomes important area. Color images are often corrupted by noises due to the input sensor, channel transmission errors and so on. Some filtering techniques such as vector median, mean filter, and vector $\alpha-trimmed$ mean filter have been used for color noise removal. Among them, vector $\alpha-trimmed$ mean filter gave the best performance in the mixed color noise. But, there are edge shift and blurring effect because vector $\alpha-trimmed$ mean filter is uniformly processed across the image. So, we proposed a conditional fuzzy cluster filter to improve this problems. Simulation results showed that the proposed scheme improves the NCD measure and visual quality over the conventional vector $\alpha-trimmed$ mean filter in the mixed color noise.

  • PDF

Color Image Filter Using Fuzzy Logic (퍼지 논리를 이용한 컬러 영상 필터)

  • Ko, Chang-Ryong;Koo, Kyung-Wan;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.43-48
    • /
    • 2011
  • Among various methods proposed earlier, fuzzy image filtering is usually one of the favored techniques because it has less blurring effect and the decrease of noise removal rate after filtering. However, fuzzy filtering is ineffective on color images since it is firstly developed with gray scale. Thus, in this paper, we propose a fuzzy filtering algorithm for color images. First, we divide RGB color information from image into three channels of R, G, and B and judge the possibility of each pixel with mask by fuzzy logic independently. The output pixel value might be the average or median according to the degree of noise. Our experiment successfully verifies the effectiveness of new algorithm in color image.

Feature Point Extraction of Hand Region Using Vision (비젼을 이용한 손 영역 특징 점 추출)

  • Jeong, Hyun-Suk;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2041-2046
    • /
    • 2009
  • In this paper, we propose the feature points extraction method of hand region using vision. To do this, first, we find the HCbCr color model by using HSI and YCbCr color model. Second, we extract the hand region by using the HCbCr color model and the fuzzy color filter. Third, we extract the exact hand region by applying labeling algorithm to extracted hand region. Fourth, after finding the center of gravity of extracted hand region, we obtain the first feature points by using Canny edge, chain code, and DP method. And then, we obtain the feature points of hand region by applying the convex hull method to the extracted first feature points. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.

Fuzzy Threshold Inference of a Nonlinear Filter for Color Sketch Feature Extraction (컬러 스케치특징 추출을 위한 비선형 필터의 퍼지임계치 추론)

  • Cho Sung-Mok;Cho Ok-Lae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.398-403
    • /
    • 2006
  • In this paper, we describe a fuzzy threshold selection technique for feature extraction in digital color images. this is achieved by the formulation a fuzzy inference system that evaluates threshold for feature configurations. The system uses two fuzzy measures. They capture desirable characteristics of features such as dependency of local intensity and continuity in an image. We give a graphical description of a nonlinear sketch feature extraction filter and design the fuzzy inference system in terms of the characteristics of the feature. Through the design, we provide selection method on the choice of a threshold to achieve certain characteristics of the extracted features. Experimental results show the usefulness of our fuzzy threshold inference approach which is able to extract features without human intervention.

  • PDF

Classification and Tracking of Hand Region Using Deformable Template and Condensation (Deformable Template과 Condensation을 이용한 손 영역 분류와 추적)

  • Jeong, Hyeon-Seok;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1477-1481
    • /
    • 2010
  • In this paper, we propose the classification and tracking method of the hand region using deformable template and condensation. To do this, first, we extract the hand region by using the fuzzy color filter and HCbCr color model. Second, we extract the edge of hand by applying the Canny edge algorithm. Third, we find the first template by calculating the conditional probability between the extracted edge and the model edge. If the accurate template of the first object is decided, the condensation algorithm tries to track it. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.