• Title/Summary/Keyword: fuzzy clustering

Search Result 732, Processing Time 0.029 seconds

A Fuzzy Clustering Algorithm for Clustering Categorical Data (범주형 데이터의 분류를 위한 퍼지 군집화 기법)

  • Kim, Dae-Won;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.661-666
    • /
    • 2003
  • In this paper, the conventional k-modes and fuzzy k-modes algorithms for clustering categorical data is extended by representing the clusters of categorical data with fuzzy centroids instead of the hard-type centroids used in the original algorithm. The hard-type centroids of the traditional algorithms had difficulties in dealing with ambiguous boundary data, which might be misclassified and lead to thelocal optima. Use of fuzzy centroids makes it possible to fully exploit the power of fuzzy sets in representing the uncertainty in the classification of categorical data. The distance measure between data and fuzzy centroids is more precise and effective than those of the k-modes and fuzzy k-modes. To test the proposed approach, the proposed algorithm and two conventional algorithms were used to cluster three categorical data sets. The proposed method was found to give markedly better clustering results.

Extension of the Possibilistic Fuzzy C-Means Clustering Algorithm (Possibilistic Fuzzy C-Means 클러스터링 알고리즘의 확장)

  • Heo, Gyeong-Yong;U, Yeong-Un;Kim, Gwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.423-426
    • /
    • 2007
  • 클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 각 포인트가 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means (PFCM) 방법에 Gath-Geva (GG)의 방법 을 적용하여 PFCM을 확장한다. 제안한 방법은 PFCM의 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며, 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이 나는 경우에도 정확한 결과를 얻을 수 있다는 사실을 실험 결과를 통해 확인할 수 있었다.

  • PDF

Machining condition monitoring for micro-grooving on mold steel using fuzzy clustering method (퍼지 클러스터링을 이용한 금형강에 미세 그루브 가공시 가공상태 모니터링)

  • 이은상;곽철훈;김남훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.47-54
    • /
    • 2003
  • Research during the past several years has established the effectiveness of acoustic emission (AE)-based sensing methodologies for machine condition analysis and process. AE has been proposed and evaluated for a variety of sensing tasks as well as for use as a technique for quantitative studies of manufacturing process. STD11 has been known as difficult-to-cut materials. The micro-grooving machine was developed for this study and the experiments were performed using CBN blade for machining STD11. Evaluating the machining conditions, frequency spectrum analysis of acoustic emission (AE) signals according to each conditions were applied. Fuzzy clustering method for associating the preprocessor outputs with the appropriate decisions was followed by frequency spectrum analysis. FFT is used to decompose AE signal into different frequency bands in time domain, the root mean square (RMS) values extracted from the decomposed signal of each frequency band were used as features.

A study on fuzzy constraint line clustering for optical flow estimation (Optical Flow 추정을 위한 Fuzzy constraint Line Clustering에 관한 연구)

  • 김현주;강해석;이상홍;김문현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.150-158
    • /
    • 1994
  • In this paepr, Fuzzy Constraint Line Clustering (FCLC) method for optical flow estimation is proposed. FCLC represents the spatical and temporal gradients as fuzzy sets. Based on these sets, several constraint lines with different membership values are generated for the poxed whose velocity is to be estimated. We describe the process for obtaining the membership values of the spatial and temporal gradients and that of the corresponding constraint line. We also show the process for deciding the tightest cluster of point formalated by intersection between constraint lines. For the synthetic and real images, the results of FCLC are compared with of CLC.

  • PDF

A Study of Expanded Severity Index of Voltage Sag Using Fuzzy Clusterin (Fuzzy Clustering을 이용한 순간전압강하(Voltage Sag)의 확장된 심각도 지수(Expanded Severity Index) 연구)

  • Oh, Won-Wook;Kim, Yong-Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.81-84
    • /
    • 2011
  • 본 논문은 전압 이벤트 현상 중 순간전압강하(Sag) 현상에 초점을 맞추었다. Sag 현상의 심각한 정도를 표현하는 심각도(Voltage Sag Severity) 지수는 동일 지속시간에 대한 임계치와의 비로 표현하였다. 제안하는 확장된 심각도(Expanded Severity) 지수는 sag현상의 분포에 따른 일시반복성의 정보를 표현하였다. 기존의 임계치를 표현하는 ITIC curve를 기반으로 된 심각도와 sag 현상이 발생하는 지속시간-전압 그래프의 분포를 fuzzy clustering을 통하여 medoid를 측정하고, medoid의 심각도와 실제 임계치에 근접한 sag 지점의 심각도를 계산하여 비교하였다. 확장된 심각도 지수는 심각도가 높은 현상들과의 연계성을 나타내는 지수로 심각한 정도의 수치 정보 이외에 일시적인 현상인지 지속 반복적인 현상인지를 0과 1사이의 수치로 표현하였고, 실험을 통하여 입증하였다.

  • PDF

Fuzzy Logic Approach to Zone-Based Stable Cluster Head Election Protocol-Enhanced for Wireless Sensor Networks

  • Mary, S.A. Sahaaya Arul;Gnanadurai, Jasmine Beulah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1692-1711
    • /
    • 2016
  • Energy is a scarce resource in wireless sensor networks (WSNs). A variety of clustering protocols for WSNs, such as the zone-based stable election protocol-enhanced (ZSEP-E), have been developed for energy optimization. The ZSEP-E is a heterogeneous zone-based clustering protocol that focuses on unbalanced energy consumption with parallel formation of clusters in zones and election of cluster heads (CHs). Most ZSEP-E research has assumed probabilistic election of CHs in the zones by considering the maximum residual energy of nodes. However, studies of the diverse CH election parameters are lacking. We investigated the performance of the ZSEP-E in such scenarios using a fuzzy logic approach based on three descriptors, i.e., energy, density, and the distance from the node to the base station. We proposed an efficient ZSEP-E scheme to adapt and elect CHs in zones using fuzzy variables and evaluated its performance for different energy levels in the zones.

Dynamic Hysteresis Model Based on Fuzzy Clustering Approach

  • Mourad, Mordjaoui;Bouzid, Boudjema
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.884-890
    • /
    • 2012
  • Hysteretic behavior model of soft magnetic material usually used in electrical machines and electronic devices is necessary for numerical solution of Maxwell equation. In this study, a new dynamic hysteresis model is presented, based on the nonlinear dynamic system identification from measured data capabilities of fuzzy clustering algorithm. The developed model is based on a Gustafson-Kessel (GK) fuzzy approach used on a normalized gathered data from measured dynamic cycles on a C core transformer made of 0.33mm laminations of cold rolled SiFe. The number of fuzzy rules is optimized by some cluster validity measures like 'partition coefficient' and 'classification entropy'. The clustering results from the GK approach show that it is not only very accurate but also provides its effectiveness and potential for dynamic magnetic hysteresis modeling.

OPTIMIZATION OF THE TEST INTERVALS OF A NUCLEAR SAFETY SYSTEM BY GENETIC ALGORITHMS, SOLUTION CLUSTERING AND FUZZY PREFERENCE ASSIGNMENT

  • Zio, E.;Bazzo, R.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.414-425
    • /
    • 2010
  • In this paper, a procedure is developed for identifying a number of representative solutions manageable for decision-making in a multiobjective optimization problem concerning the test intervals of the components of a safety system of a nuclear power plant. Pareto Front solutions are identified by a genetic algorithm and then clustered by subtractive clustering into "families". On the basis of the decision maker's preferences, each family is then synthetically represented by a "head of the family" solution. This is done by introducing a scoring system that ranks the solutions with respect to the different objectives: a fuzzy preference assignment is employed to this purpose. Level Diagrams are then used to represent, analyze and interpret the Pareto Fronts reduced to the head-of-the-family solutions.

Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE (FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구)

  • Park, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems Based on Evolutionary Information Granulation (진화론적 정보 입자에 기반한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.340-342
    • /
    • 2004
  • In this paper, we introduce a new category of fuzzy inference systems baled on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of information with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

  • PDF