• Title/Summary/Keyword: fuzzy classification rules

Search Result 98, Processing Time 0.021 seconds

Recursive Fuzzy Partition of Pattern Space for Automatic Generation of Decision Rules (결정규칙의 자동생성을 위한 패턴공간의 재귀적 퍼지분할)

  • 김봉근;최형일
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.28-43
    • /
    • 1995
  • This paper concerns with automatic generation of fuzzy rules which can be used for pattern classification. Feature space is recursively subdivided into hyperspheres, and each hypersphere is represented by its centroid and bounding distance. Fuzzy rules are then generated based on the constructed hyperspheres. The resulting fuzzy rules have very simple premise parts, and they can be organized into a hierarchical structure so that classification process can be implemented very rapidly. The experimented results show that the suggested method works very well compared to other methods.

  • PDF

Fuzzy Rules Generation Using the LVQ (LVQ를 이용한 퍼지 규칙 생성)

  • Lee, Nam-Il;Jang, Gwang-Gyu;Im, Han-Gyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.988-998
    • /
    • 1999
  • This paper is to investigate the method of reducing the number of fuzzy rules with the help of LVQ. a large number of training patterns usually leads to a large set of fuzzy rules that require a large computer memory and take a long time to perform classification. so, in order to solve these problems, it is necessary to study to minimize the number of fuzzy rules. However, so as to minimize the performance degradation resulting from the reduction of fuzzy rules, fuzzy rules are generated after training the high-quality initial reference pattern. Through the simulation, we confirm that the proposed method is very effective.

  • PDF

An Algorithmic approach for Fuzzy Logic Application to Decision-Making Problems (결정 문제에 대한 퍼지 논리 적용의 알고리즘적 접근)

  • 김창종
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.3-15
    • /
    • 1997
  • In order to apply fuzzy logic, two major tasks need to be performed: the derivation of fuzzy rules and the determination of membership functions. These tasks are often difficult and time-consuming. This paper presents an algorithmic method for generating membership functions and fuzzy rules applicable to decision-making problems; the method includes an entropy minimization for clustering analog samples. Membership functions are derived by partitioning the variables into desired number of fuzzy terms, and fuzzy rules are obtained using minimum entropy clustering. In the mle derivation process, rule weights are also calculated. Inference and defuzzification for classification problems are also discussed.

  • PDF

An Adaptive Neuro-Fuzzy System Using Fuzzy Min-Max Networks (퍼지 Min-Max 네트워크를 이용한 적응 뉴로-퍼지 시스템)

  • 곽근창;김성수;김주식;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.367-367
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian membership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

Ontology-based Fuzzy Classifier for Pattern Classification (패턴분류를 위한 온톨로지 기반 퍼지 분류기)

  • Lee, In-K.;Son, Chang-S.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.814-820
    • /
    • 2008
  • Recently, researches on ontology-based pattern classification have been tried out in many fields. However, in most of the researches, the ontology which represents the knowledge about pattern classification is just referred during the processes of the pattern classification. In this paper, we propose ontology-based fuzzy classifier for pattern classification which is extended from the fuzzy rule-based classifier In order to realize the proposed classifier, we construct an ontology by conceptualizing the method of fuzzy rule-based pattern classification and generate ontology inference rules for pattern classification. Lastly, we show the validity o) the proposed classifier through the experiment of pattern classification on the Fisher's IRIS dataset.

A Learning Algorithm of Fuzzy Neural Networks Using a Shape Preserving Operation

  • Lee, Jun-Jae;Hong, Dug-Hun;Hwang, Seok-Yoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.131-138
    • /
    • 1998
  • We derive a back-propagation learning algorithm of fuzzy neural networks using fuzzy operations, which preserves the shapes of fuzzy numbers, in order to utilize fuzzy if-then rules as well as numerical data in the learning of neural networks for classification problems and for fuzzy control problems. By introducing the shape preseving fuzzy operation into a neural network, the proposed network simplifies fuzzy arithmetic operations of fuzzy numbers with exact result in learning the network. And we illustrate our approach by computer simulations on numerical examples.

  • PDF

Design of Fuzzy System with Hierarchical Classifying Structures and its Application to Time Series Prediction (계층적 분류구조의 퍼지시스템 설계 및 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.595-602
    • /
    • 2009
  • Fuzzy rules, which represent the behavior of their system, are sensitive to fuzzy clustering techniques. If the classification abilities of such clustering techniques are improved, their systems can work for the purpose more accurately because the capabilities of the fuzzy rules and parameters are enhanced by the clustering techniques. Thus, this paper proposes a new hierarchically structured clustering algorithm that can enhance the classification abilities. The proposed clustering technique consists of two clusters based on correlationship and statistical characteristics between data, which can perform classification more accurately. In addition, this paper uses difference data sets to reflect the patterns and regularities of the original data clearly, and constructs multiple fuzzy systems to consider various characteristics of the differences suitably. To verify effectiveness of the proposed techniques, this paper applies the constructed fuzzy systems to the field of time series prediction, and performs prediction for nonlinear time series examples.

Construction of Customer Appeal Classification Model Based on Speech Recognition

  • Sheng Cao;Yaling Zhang;Shengping Yan;Xiaoxuan Qi;Yuling Li
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.258-266
    • /
    • 2023
  • Aiming at the problems of poor customer satisfaction and poor accuracy of customer classification, this paper proposes a customer classification model based on speech recognition. First, this paper analyzes the temporal data characteristics of customer demand data, identifies the influencing factors of customer demand behavior, and determines the process of feature extraction of customer voice signals. Then, the emotional association rules of customer demands are designed, and the classification model of customer demands is constructed through cluster analysis. Next, the Euclidean distance method is used to preprocess customer behavior data. The fuzzy clustering characteristics of customer demands are obtained by the fuzzy clustering method. Finally, on the basis of naive Bayesian algorithm, a customer demand classification model based on speech recognition is completed. Experimental results show that the proposed method improves the accuracy of the customer demand classification to more than 80%, and improves customer satisfaction to more than 90%. It solves the problems of poor customer satisfaction and low customer classification accuracy of the existing classification methods, which have practical application value.

FMMN-based Neuro-Fuzzy Classifier and Its Application (FMMN 기반 뉴로-퍼지 분류기와 응용)

  • 곽근창;전명근;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.259-262
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian menbership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

Integrated GUI Environment of Parallel Fuzzy Inference System for Pattern Classification of Remote Sensing Images

  • Lee, Seong-Hoon;Lee, Sang-Gu;Son, Ki-Sung;Kim, Jong-Hyuk;Lee, Byung-Kwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.133-138
    • /
    • 2002
  • In this paper, we propose an integrated GUI environment of parallel fuzzy inference system fur pattern classification of remote sensing data. In this, as 4 fuzzy variables in condition part and 104 fuzzy rules are used, a real time and parallel approach is required. For frost fuzzy computation, we use the scan line conversion algorithm to convert lines of each fuzzy linguistic term to the closest integer pixels. We design 4 fuzzy processor unit to be operated in parallel by using FPGA. As a GUI environment, PCI transmission, image data pre-processing, integer pixel mapping and fuzzy membership tuning are considered. This system can be used in a pattern classification system requiring a rapid inference time in a real-time.