Journal of the Institute of Electronics and Information Engineers
/
v.49
no.9
/
pp.314-321
/
2012
Harmful gases which are generated from various rout at growth environment of livestock ban have a direct and indirect bad influence to the livestock and farmers, and also step-up breeding density and long-term exposure to the sealed environment of winter can be fatal. In this paper, we propose a gas measurement system for monitoring gases of ammonia, hydrogen sulfide, volatile organic compounds, etc. which arise from the muck. The measurement system consist of both wireless gas sensor node and gas recognition software using a Fuzzy Min-Max neural network. To evaluate the performance of suggested system, gas measurement experiments are performed in laboratory environment by using the designed wireless gas sensor node. And we show the performance through classification test for the target gases by the designed gas recognition software.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.539-542
/
2003
A motor is the workhorse of our industry. The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. Different internal motor faults (e.g., inter-turn short circuits, broken bearings, broken rotor bars) along with external motor faults (e.g., phase failure, mechanical overload, blocked rotor) are expected to happen sooner or later. This paper introduces the fault detection technique of induction motors based upon the stator current. The fault motors have rotor bar broken or rotor unbalance defect, respectively. The stator currents are measured by the current meters and stored by the time domain. The time domain is not suitable to represent the current signals, so the frequency domain is applied to display the signals. The Fourier Transformer is used for the conversion of the signal. After the conversion of the signals, the features of the signals have to be extracted by the signal processing methods like a wavelet analysis, a spectrum analysis, etc. The discovered features are entered to the pattern classification model such as a neural network model, a polynomial neural network, a fuzzy inference model, etc. This paper describes the fault detection results that use wavelet decomposition. The wavelet analysis is very useful method for the time and frequency domain each. Also it is powerful method to detect the features in the signals.
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.7
/
pp.1588-1593
/
2005
In coagulant control of water treatment plants, rule extraction, one of datamining categories, was performed for coagulant control of a water treatment plant. Clustering methods were applied to extract control rules from data. These control rules can be used for fully automation of water treatment plants instead of operator's knowledge for plant control. To perform fuzzy clustering, there are some coefficients to be determined and these kinds of studies have been performed over decades such as clustering indices. In this study, statistical indices were taken to calculate the number of clusters. Simultaneously, seed points were found out based on hierarchical clustering. These statistical approaches give information about features of clusters, so it can reduce computing cost and increase accuracy of clustering. The proposed algorithm can play an important role in datamining and knowledge discovery.
The heart disease taking the second place of the cause of the death of modern people is a terrible disease that makes sudden death without noticing. To judge the aortic valve disease of heart diseases a name of disease was diagnosed using psychological data provided from physioNet. Aortic valve is a valve of the area that blood is spilled from left ventricle to aorta. Aortic stenosis of heart troubles is a disease when the valve does not open appropriately in contracting the left ventricle to aorta due to narrowed aortic valve. In this paper, 3126 samples of cardiac sound data were used as an experiment data composed of 180 characteristics including normal people and aortic valve stenosis patients. To diagnose normal and aortic valve stenosis patients, NEWFM was utilized. By using an average method of weight as an feature selection method of NEWFM, the result shows 91.0871% accuracy.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.3
/
pp.383-388
/
2006
SBR is one of the most general sewage/wastewater treatment processes and, particularly, has an advantage in high concentration wastewater treatment like sewage wastewater. A Kernel PCA based fault diagnosis system for biological reaction in full-scale wastewater treatment plant was proposed using only common bio-chemical sensors such as ORP(Oxidation-Reduction Potential) and DO(Dissolved Oxygen). During the SBR operation, the operation status could be divided into normal status and abnormal status such as controller malfunction, influent disturbance and instrumental trouble. For the classification and diagnosis of these statuses, a series of preprocessing, dimension reduction using PCA, LDA, K-PCA and feature reduction was performed. Also, the diagnosis result using differential data was superior to that of raw data, and the fusion data show better results than other data. Also, the results of combination of K-PCA and LDA were better than those of LDA or (PCA+LDA). Finally, the fault recognition rate in case of using only ORP or DO was around maximum 97.03% and the fusion method showed better result of maximum 98.02%.
Traditional clustering methods, like k-means or fuzzy clustering, are prototype-based methods which are applicable only to convex clusters. On the other hand, spectral clustering tries to find clusters only using local similarity information. Its ability to handle concave clusters has gained the popularity recent years together with support vector machine (SVM) which is a kernel-based classification method. However, as is in SVM, the kernel width plays an important role and has a great impact on the result. Several methods are proposed to decide it automatically, it is still determined based on heuristics. In this paper, we proposed an adaptive method deciding the kernel width based on distance histogram. The proposed method is motivated by the fact that the affinity matrix should be formed into a block diagonal matrix to generate the best result. We use the tradition Euclidean distance together with the random walk distance, which make it possible to form a more apparent block diagonal affinity matrix. Experimental results show that the proposed method generates more clear block structured affinity matrix than the existing one does.
Multi-temporal data have been used frequently for analyzing dynamic characteristics of ecological environment. Little research, however, shows the characteristics and problems of the analysis of continental- or global-scale, multi-temporal satellite data. This research investigated the characteristics of large-area, multi-temporal data analysis and the problems of phenological difference of ground vegetation and scarcity of training data for a long term period. This research suggested a latitudinal image segmentation method and an invariant pixel method. As an application, the image segmentation and invariant pixel methods were applied to a set of AVHRR data covering most part of Asia from 1982 to 1993. Fuzzy classification results showed the decrease of forests and the increase of croplands at densely populated areas, however an opposite trend was detected at sparsely populated or depopulated areas.
As the complexity of a 3D game is increased by various factors of the game scenario, it has a problem for controlling the interrelation of the game objects. Therefore, a game system has a necessity of the coordination of the responses of the game objects. Also, it is necessary to control the behaviors of animations of the game objects in terms of the game scenario. To produce realistic game simulations, a system has to include a structure for designing the interactions among the game objects. This paper presents a method that designs the dynamic control mechanism for the interaction of the game objects in the game scenario. For the method, we suggest a game agent system as a framework that is based on intelligent agents who can make decisions using specific rules. Game agent systems are used in order to manage environment data, to simulate the game objects, to control interactions among game objects, and to support visual authoring interface that ran define a various interrelations of the game objects. These techniques can process the autonomy level of the game objects and the associated collision avoidance method, etc. Also, it is possible to make the coherent decision-making ability of the game objects about a change of the scene. In this paper, the rule-based behavior control was designed to guide the simulation of the game objects. The rules are pre-defined by the user using visual interface for designing their interaction. The Agent State Decision Network, which is composed of the visual elements, is able to pass the information and infers the current state of the game objects. All of such methods can monitor and check a variation of motion state between game objects in real time. Finally, we present a validation of the control method together with a simple case-study example. In this paper, we design and implement the supervised classification systems for high resolution satellite images. The systems support various interfaces and statistical data of training samples so that we can select the most effective training data. In addition, the efficient extension of new classification algorithms and satellite image formats are applied easily through the modularized systems. The classifiers are considered the characteristics of spectral bands from the selected training data. They provide various supervised classification algorithms which include Parallelepiped, Minimum distance, Mahalanobis distance, Maximum likelihood and Fuzzy theory. We used IKONOS images for the input and verified the systems for the classification of high resolution satellite images.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.42
no.5
s.305
/
pp.27-34
/
2005
Ventricular fibrillation(VF) is generally caused by chaotic behavior of electrical propagation in heart and may result in sudden cardiac death. In this study, we proposed a ventricular fibrillation detection algorithm based on support vector machine classifier, which could offer benefits to reduce the teaming costs as well as good classification performance. Before the extraction of input features, raw ECG signal was applied to preprocessing procedures, as like wavelet transform based bandpass filtering, R peak detection and segment assignment for feature extraction. We selected input features which of some are related to the rhythm information and of others are related to wavelet coefficients that could describe the morphology of ventricular fibrillation well. Parameters for SVM classifier, C and ${\alpha}$, were chosen as 10 and 1 respectively by trial and error experiments. Each average performance for normal sinus rhythm ventricular tachycardia and VF, was 98.39%, 96.92% and 99.88%. And, when the VF detection performance of SVM classifier was compared to that of multi-layer perceptron and fuzzy inference methods, it showed similar or higher values. Consequently, we could find that the proposed input features and SVM classifier would one of the most useful algorithm for VF detection.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.40
no.4
/
pp.193-205
/
2003
There has been so many research activities about robot soccer system in the many research fields, for example, intelligent control, communication, computer technology, sensor technology, image processing, mechatronics. Especially researchers research strategy for attacking in the field of strategy, and develop intelligent strategy. Then, soccer robots cannot defense completely and efficiently by using simple defense strategy. Therefore, intention extraction of attacker is needed for efficient defense. In this thesis, intention extractor of soccer robots is designed and developed based on FMMNN(Fuzzy Min-Max Neural networks ). First, intention for soccer robot system is defined, and intention extraction for soccer robot system is explained.. Next, FMMNN based intention extractor for soccer robot system is determined. FMMNN is one of the pattern classification method and have several advantages: on-line adaptation, short training time, soft decision. Therefore, FMMNN is suitable for soccer robot system having dynamic environment. Observer extracts attack intention of opponents by using this intention exactor, and this intention extractor is also used for analyzing strategy of opponent team. The capability of developed intention extractor is verified by simulation of 3 vs. 3 robot succor simulator. It was confirmed that the rates of intention extraction each experiment increase.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.