• 제목/요약/키워드: fuzzy association rules

검색결과 30건 처리시간 0.027초

퍼지 연관규칙을 이용한 뉴스레터 시스템 설계 및 구현 (Design AND IMPLEMENTATION of A News letter system using fuzzy association rules)

  • 정연홍;박우수;박규석
    • 인터넷정보학회논문지
    • /
    • 제3권5호
    • /
    • pp.41-49
    • /
    • 2002
  • 웹 마이닝은 World Wide Web으로부터 유용한 정보를 발견하고 분석하는 일로 정의 할 수 있다. 본 논문에서는 이러한 웹 마이닝을 통하여, 사용자 접근 페이지(성향)를 분석하고, 사용자에게 유용한 정보를 제공할 수 있는 시스템을 구축 하였다. 제안 시스템은 웹 사이트를 방문한 사용자의 행동과 발송된 뉴스레터로부터의 행동에 따른 정보를 조사하고 필터링을 통해 카테고리별로 분류과정을 거친다. 이러한 과정을 통해 생성된 각 카테고리에 대해 최근에 접근한 사용자들에 퍼지 연관규칙 (fuzzy association rules)을 적용하며, 이렇게 생성된 집합과 각 사용자가 접근한 페이지들의 집합을 비교하여 각 사용자에게 적합한 뉴스레터를 발송할 수 있다.

  • PDF

퍼지추론규칙을 이용한 적응형 평가시스템 (An Adaptive Evaluation System Using Fuzzy Reasoning Rule)

  • 엄명용;정순영;이원규
    • 컴퓨터교육학회논문지
    • /
    • 제6권4호
    • /
    • pp.95-113
    • /
    • 2003
  • 본 논문에서는 기존의 LCMS에서 사용되는 평가시스템에 퍼지 추론 규칙을 이용한 적응형 퍼지평가시스템(AFES ; Adaptie Fuzzy Evaluation System)을 제안한다. AFES 는 학습자가 하나의 학습코스(learning course)에 들어가기 전에 퍼지진단평가(fuzzy diagnostic evealuation)를 통해 학습자에게 코스수준(course level)을 부여한다. 학습자는 코스수준에 따른 맞춤식 학습경로(learning path)로 학습을 종료한 후, 퍼지최종평가(fuzzy final evaluation)를 통해 최종성적(final grade)을 AFES 으로부터 부여 받는다. AFES의 가장 큰 특징은 최종성적의 점수 부여 규칙에 있는데, 만약 서로 다른 학습자가 동일한 문제 수에 대하여 같은 수의 정답을 냈더라도, AFES 는 125 가지 퍼지 추론 규칙(fuzzy reasoning rule)에 의거하여 탄력적으로 서로 다른 최종성적을 학습자에게 부여한다.

  • PDF

An Online Response System for Anomaly Traffic by Incremental Mining with Genetic Optimization

  • Su, Ming-Yang;Yeh, Sheng-Cheng
    • Journal of Communications and Networks
    • /
    • 제12권4호
    • /
    • pp.375-381
    • /
    • 2010
  • A flooding attack, such as DoS or Worm, can be easily created or even downloaded from the Internet, thus, it is one of the main threats to servers on the Internet. This paper presents an online real-time network response system, which can determine whether a LAN is suffering from a flooding attack within a very short time unit. The detection engine of the system is based on the incremental mining of fuzzy association rules from network packets, in which membership functions of fuzzy variables are optimized by a genetic algorithm. The incremental mining approach makes the system suitable for detecting, and thus, responding to an attack in real-time. This system is evaluated by 47 flooding attacks, only one of which is missed, with no false positives occurring. The proposed online system belongs to anomaly detection, not misuse detection. Moreover, a mechanism for dynamic firewall updating is embedded in the proposed system for the function of eliminating suspicious connections when necessary.

소속 함수에 의한 퍼지 추론 시스템의 입출력 공간 특성 및 성능 분석 (Characteristics of Input-Output Spaces of Fuzzy Inference Systems by Means of Membership Functions and Performance Analyses)

  • 박건준;이동윤
    • 한국콘텐츠학회논문지
    • /
    • 제11권4호
    • /
    • pp.74-82
    • /
    • 2011
  • 비선형 공정을 퍼지 모델링 하는 것은 전체 입력의 공간 분할 및 퍼지 추론 방법에 따른 퍼지 추론 시스템의 입출력 특성을 분석하는 것이 필요하다. 이를 위해, 퍼지 모델은 입력 변수와 퍼지 입력 공간 분할 및 후반부 다항식 함수에 의한 구조 및 파라미터를 동정함으로서 표현된다. 퍼지 규칙의 전반부에서 입력 데이터의 최소 값과 최대 값을 이용하는 최소-최대 방법 및 입력 데이터를 군집으로 형성하는 C-Means 클러스터링 알고리즘이 퍼지 모델의 동정을 위해 사용되고, 소속 함수는 삼각형, 범종형, 사다리꼴형 소속함수를 사용한다. 퍼지 규칙의 후반부 동정에서 퍼지 추론은 간략 및 선형 추론과 같은 두 가지 형태를 수행한다. 각 규칙의 후반부 파라미터들, 즉 다항식의 계수들의 동정은 표준 최소자승법에 의해 수행된다. 마지막으로, 비선형 공정으로는 널리 이용되는 가스로 데이터를 이용하여 시스템 특성 및 성능을 평가한다.

Overview of Fuzzy Associations Mining

  • Chen, Guoqing;Wei, Qiang;Kerre, Etienne;Wets, Geert
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.1-6
    • /
    • 2003
  • Associations, as specific forms of knowledge, reflect relationships among items in databases, and have been widely studied in the fields of knowledge discovery and data mining. Recent years have witnessed many efforts on discovering fuzzy associations, aimed at coping with fuzziness in knowledge representation and decision support processes. This paper focuses on associations of three kinds, namely, association rules, functional dependencies and pattern associations, and overviews major fuzzy logic extensions accordingly.

  • PDF

빅데이터 추천시스템을 위한 과립기반 연관규칙 마이닝 (Granule-based Association Rule Mining for Big Data Recommendation System)

  • 박인규
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.67-72
    • /
    • 2021
  • 연관규칙 마이닝은 여러 테이블에 숨겨진 패턴들의 관계를 나타내주는 방법이다. 요즈음에는 연관규칙 마이닝에 보다 세부적인 의미를 추가하기 위하여 과립화 논리를 이용하고 있다. 또한 기존의 데이터를 이용하여 추천하는 기존의 시스템과는 달리 과립화 연관규칙에서는 신규 가입자나 신규상품에 대한 추천의 경우도 가능하다. 따라서 연관규칙의 과립화의 정성적인 크기를 결정하는 것이 추천 시스템의 성능을 좌우한다. 본 논문에서는 관람자가 평가한 영화에 대한 관계를 파악하기 위하여 퍼지논리와 샤논 엔트로피 개념을 이용하여 관람자와 영화데이터에 대한 과립화 방법을 제안한다. 연구는 관람자와 영화간의 연관규칙의 함의에 결정적인 역할을 하는 데이터의 과립화의 크기를 결정하는 부분과 이러한 과립화를 이용하여 관람자와 영화간의 연관규칙을 추출하는 두 번째 부분으로 구성되어 있으며 넷플릭스의 MovieLens데이터를 이용하여 분석하였다. 최종적으로 도출된 연관규칙의 의미와 추천의 정확도 및 고려해야하는 함의를 제시하였다.

퍼지 일반화 계층을 이용한 일반화된 퍼지 정량 연관규칙 마이닝 (Mining Generalized Fuzzy Quantitative Association Rules with Fuzzy Generalization Hierarchies)

  • 한상훈;손봉기;이건명
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.8-11
    • /
    • 2001
  • 연관규칙 마이닝은 트랜잭션 데이터를 이루고 있는 항목간의 잠재적인 의존관계를 발견하는 데이터 마이닝의 한 분야이다. 정량 연관규칙이란 부류적 속성과 정량적 속성을 모두 포함한 연관규칙이다. 정량 연관규칙 마아닝을 위한 퍼지 기술의 응용, 정량 연관규칙 마이닝을 위한 일반화된 연관규칙 마이닝, 사용자의 관심도를 반영한 중요도 가중치가 있는 연관규칙 마이닝 등에 대한 연구가 이루어져 왔다. 이 논문에서는 중요도 가중치가 있는 일반화된 퍼지 정량 연관규칙 마이닝의 새로운 방법을 제안한다. 이 방법은 부류적 속성의 퍼지 개념 계층과 정량적 속성의 퍼지 언어항 일반화 계층을 일반화된 추출하기 위해 이용한다. 이것은 속성들의 수준별 일반화 계층과 속성의 중요도 가중치를 이용함으로써 사용자가 보다 융통성 있는 연관규칙을 마이닝할 수 있게 해준다.

  • PDF

사용자 행동 패턴 선호도 학습을 위한 퍼지 귀납 학습 시스템 (Fuzzy Inductive Learning System for Learning Preference of the User's Behavior Pattern)

  • 이형욱;김용휘;박광현;김용수;정진우;조준면;김민경;변증남
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.805-812
    • /
    • 2005
  • 본 논문은 스마트 홈과 같이 다양한 센서 및 제어 네트워크가 밀집되어 있는 유비쿼터스 환경 하에서 복잡한 인터페이스의 사용에 대한 사용자의 인지 부담(cognitive load)을 줄이고, 개인화된(personalized) 서비스를 자율적으로 제공하기 위한 새로운 사용자 행동 패턴 선호도 학습기법을 제안하였다. 이를 위해 지식 발견(knowledge discovery)을 위한 평생 학습(life-long learning)의 관점에서 퍼지귀납(fuzzy inductive) 학습 방법론을 제안하며, 이것은 수치 데이터로부터 입력 공간에 대한 효율적인 퍼지 분할(fuzzy partition)을 얻어내고 일관성 있는(consistent) 퍼지 상관 롤(fuzzy association rule)을 얻어내도록 한다.

개선된 퍼지 추론 규칙을 이용한 색채 정보 인식에 관한 연구 (A Study on Color Information Recognition with Improved Fuzzy Inference Rules)

  • 우승범;김광백
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.105-111
    • /
    • 2009
  • RGB 모델을 통한 정적인 추론 규칙을 적용한 기존의 색채 정보 인식 방법은 RGB모델이 가지는 인간 시각과의 괴리감과 특정한 환경에서만 적용할 수 있는 문제점이 있다. 본 논문에서는 HSI 모델을 적용하여 색채에 대한 인간 인식 과정과 유사한 형태의 추론 방식과, 사용자에 의해서 추론규칙을 추가, 수정, 삭제 할 수 있는 방법을 제안한다. 본 논문에서는 H, S, I 각각의 소속구간에 대하여 H는 Sine, Cosine 함수를 사용하여 소속구간을 설계하였으며, S, I는 삼각 타입의 소속 함수로 설계하였다. 설계된 각각의 소속구간에 대하여 소속구간 병합을 적용하여 소속도를 계산하고, 계산된 결과들은 미리 제시된 추론규칙에 적용하여 색채를 추론한다. 제안된 두 가지 방법을 적용하여 실험한 결과, 기존의 방법보다 제안된 방법이 비교적 직관적이며 효율적인 형태로 결론을 도출할 수 있음을 확인하였다.

  • PDF

Construction of Customer Appeal Classification Model Based on Speech Recognition

  • Sheng Cao;Yaling Zhang;Shengping Yan;Xiaoxuan Qi;Yuling Li
    • Journal of Information Processing Systems
    • /
    • 제19권2호
    • /
    • pp.258-266
    • /
    • 2023
  • Aiming at the problems of poor customer satisfaction and poor accuracy of customer classification, this paper proposes a customer classification model based on speech recognition. First, this paper analyzes the temporal data characteristics of customer demand data, identifies the influencing factors of customer demand behavior, and determines the process of feature extraction of customer voice signals. Then, the emotional association rules of customer demands are designed, and the classification model of customer demands is constructed through cluster analysis. Next, the Euclidean distance method is used to preprocess customer behavior data. The fuzzy clustering characteristics of customer demands are obtained by the fuzzy clustering method. Finally, on the basis of naive Bayesian algorithm, a customer demand classification model based on speech recognition is completed. Experimental results show that the proposed method improves the accuracy of the customer demand classification to more than 80%, and improves customer satisfaction to more than 90%. It solves the problems of poor customer satisfaction and low customer classification accuracy of the existing classification methods, which have practical application value.