• Title/Summary/Keyword: fuzzy almost continuous

Search Result 35, Processing Time 0.023 seconds

Different approaches towards fuzzy database systems A Survey

  • Rundensteiner, Elke A.;Hawkes, Lois Wright
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.65-75
    • /
    • 1993
  • Fuzzy data is a phenomenon often occurring in real life. There is the inherent vagueness of classification terms referring to a continuous scale, the uncertainty of linguistic terms such as "I almost agree" or the vagueness of terms and concepts due to the statistical variability in communication [20] and many more. Previously, such fuzzy data was approximated by non-fuzzy (crisp) data, which obviously did not lead to a correct and precise representation of the real world. Fuzzy set theory has been developed to represent and manipulate fuzzy data [18]. Explicitly managing the degree of fuzziness in databases allows the system to distinguish between what is known, what is not known and what is partially known. Systems in the literature whose specific objective is to handle imprecision in databases present various approaches. This paper is concerned with the different ways uncertainty and imprecision are handled in database design. It outlines the major areas of fuzzification in (relational) database systems.

  • PDF

On Fuzzifying Nearly Compact Spaces

  • Zahran, A.M.;Sayed, O.R.;Abd-Allah, M. Azab;Mousa, A.K.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.296-302
    • /
    • 2010
  • This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies) introduced by Ying [16, (I)]. It investigates topological notions defined by means of regular open sets when these are planted into the frame-work of Ying's fuzzifying topological spaces (in ${\L}$ukasiewwicz fuzzy logic). The concept of fuzzifying nearly compact spaces is introduced and some of its properties are obtained. We use the finite intersection property to give a characterization of fuzzifying nearly compact spaces. Furthermore, we study the image of fuzzifying nearly compact spaces under fuzzifying completely continuous functions, fuzzifying almost continuity and fuzzifying R-map.

Design of a Smart Attitude Control Algorithm based on the Fuzzy Logic (퍼지 로직 기반 스마트 자세제어 알고리즘의 설계)

  • Oh, Sun Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.257-262
    • /
    • 2019
  • Recently, with a great deal of attention and utilization to the UAV like a drone, many application cases using UAV in various fields have been proliferated rapidly. These UAV, however, has many risks like balance deviation and drone crash due to the external environmental factors. The attitude control algorithm for UAV is the most important portion in order to maintain the safe management of UAV, and the best solution is PID control algorithm which is generously used and almost perfect attitude control technology nowadays. In this paper, we propose the smart attitude control algorithm using fuzzy logic in order to provide safe and continuous attitude control against external environmental factors, and compare the performance through simulation study between PID and our algorithm.

New Soil Classification System Using Cone Penetration Test (콘관입시험결과를 이용한 새로운 흙분류 방법의 개발)

  • Kim, Chan-Hong;Im, Jong-Chul;Kim, Young-Sang;Joo, No-Ah
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.57-70
    • /
    • 2008
  • The advantage of piezocone penetration test is a guarantee of continuous data, which is a source of reliable interpretation of target soil layer. Many researches have been carried out f3r several decades and several classification charts have been developed to classify in-situ soil from the cone penetration test result. Since most present classification charts or methods were developed based on the data which were compiled over the world except Korea, they should be verified to be feasible for Korean soil. Furthermore, sometimes their charts provide different soil classification results according to the different input parameters. However, unfortunately, revision of those charts is quite difficult or almost impossible. In this research a new soil classification model is proposed by using fuzzy C-mean clustering and neuro-fuzzy theory based on the 5371 CPT results and soil logging results compiled from 17 local sites around Korea. Proposed neuro-fuzzy soil classification model was verified by comparing the classification results f3r new data, which were not used during learning process of neuro-fuzzy model, with real soil log. Efficiency of proposed neuro-fuzzy model was compared with other soft computing classification models and Robertson method for new data.