FUZZY ALMOST C-CONTINUOUS MAPPINGS

KUL HUR, JU RAN MOON AND JANG HYUN RYOU

Department of Mathematics, Wonkwang University 344-2, Shinyong Iksan Chonbuk, Korea 570-749 TEL: (0653)850-6190, FAX: (0653)52-5139 E-Mail: kulhur@wonnms.wonkwang.ac.kr

1. Preliminaries.

Definition 1.1[1]. A mapping $f: X \to Y$ is said to be fuzzy almost continuous (or simply, f-a-continuous) at a fuzzy point x_{λ} in X if for each fuzzy open nbd V of $f(x_{\lambda})$ in Y, exist a fuzzy open nbd U of $f(x_{\lambda})$ in X such that $f(U) \subset int(clV)$. And f is said to be fuzzy almost continuous (or simply, f-a-continuous)(on X), if it is f-a-continuous at each fuzzy point in X.

Definition 1.2 [2]. A mapping $f: X \to Y$ is said to be fuzzy c-continuous (or simply, f-c-continuous) at a fuzzy point x_{λ} in X if for each fuzzy open $nbd\ V$ of $f(x_{\lambda})$ in Y such that V^c is fuzzy compact in Y, exist a fuzzy open $nbd\ U$ of x_{λ} in X such that $f(U) \subset V$. And f is said to be fuzzy c-continuous (or simply, f-c-continuous)(on X), if it is f-c-continuous at each fuzzy point in X.

The following Lemmas are useful characterization of f-c-continuous, and f-a-continuous mappings.

Lemma 1.3 [1]. Let $f: X \longrightarrow Y$ be a mapping. Then the followings are equivalent;

- (1) f is f-a-continuous.
- (2) The inverse image of every fuzzy regularly open set in Y is fuzzy open in X.
- (3) The inverse image of every fuzzy regularly closed set in Y is fizzy closed in X.

Lemma 1.4 [2]. Let $f: X \to Y$ be a mapping. Then the followings are equivalent;

- (1) f is f-c-continuous.
- (2) The inverse image of every fuzzy open set in Y having fuzzy compact compliment is fuzzy open in X.
- (3) The inverse image of every fuzzy closed compact set in Y is fuzzy closed in X.

2. Basic properties of fuzzy almost c-continuous mappings.

From Definitions 1.1 and 1.2, we introduce concept of fuzzy almost c-continuity.

Definition 2.1. A mapping $f: X \longrightarrow Y$ is said to be fuzzy almost c-continuous (or simply, f-a-c-continuous) at a fuzzy point x_{λ} in X if for each fuzzy open $nbd\ V$ of $f(x_{\lambda})$ in Y having fuzzy compact complement, exist a fuzzy open $nbd\ U$ of x_{λ} in X such that $f(U) \subset int(cl\ V)$. And the mapping f is said to be fuzzy almost c-continuous (or simply, f-a-c-continuous) (on X), if it is f-a-c-continuous at each fuzzy point in X.

It is clear that all f-a-continuous mappings are f-a-c-continuous.

Theorem 2.2. The following implications hold:

f-continuous \Longrightarrow f-c-continuous \Longrightarrow f-a-c-continuous.

Proof. Omitted.

Theorem 2.3. For a mapping $f: X \to Y$, the followings are equivalent.

- (1) f is f-a-c-continuous.
- (2) The inverse image of every fuzzy regularly open set in Y having fuzzy compact complement is fuzzy open in X.
 - (3) The inverse image of every fuzzy regularly closed compact set in Y is fuzzy closed in X.
- (4) For each $x_{\lambda} \in Fp(X)$, and each fuzzy regularly open set in Y containg $f(x_{\lambda})$ having fuzzy compact complement, exist a fuzzy open nbd U of x_{λ} in X such that $f(U) \subset V$.
- (5) For each $x_{\lambda} \in Fp(X)$, and each fuzzy open nbd V of $f(x_{\lambda})$ in Y having fuzzy compact complement, f^{-1} (int(cl V)) $\in FO(X)$.

Proof. Omitted.

Theorem 2.4. Any restriction of a f-a-c-continuous mapping is also f-a-c-continuous.

Proof. Omitted.

Theorem 2.5. If $f: X \to Y$ is f-continuous and $g: Y \to Z$ is f-a-c-continuous, then $g \circ f: X \to Z$ is f-a-c-continuous.

Proof. Omitted.

Theorem 2.6. Let $f:X \to Y$ be surjective and f-open. If $g \circ f:X \to Z$ is f-a-c-continuous, then $f:Y \to Z$ is f-a-c-continuous.

Proof. Omitted.

Lemma 2.7. Let $f: X \to Y$ be a mapping and let $x_{\lambda} \in Fp(X)$. If there exists a fuzzy open nbd U of x_{λ} in X such that U=S(U) and $f|_{U}$ is f-a-c-continuous at x_{λ} , then f is f-a-c-continuous at x_{λ} .

Proof. Omitted.

Theorem 2.8. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy open cover of X such that $U_{\alpha} = S(U_{\alpha})$ for each $\alpha \in \Lambda$. If $f|_{U_{\alpha}}$ is f-a-c-continuous for each $\alpha \in \Lambda$, then f is f-a-c-continuous.

Proof. Omitted.

Theorem 2.9. Let $f: X \to Y$ be a mapping and $X = A \cup B$, where $A, B \in FC(X)$ such that A = S(A) and B = S(B). If $f|_A$ and $f|_B$ are f-a-c-continuous, then f is f-a-c-continuous.

Proof. Omitted.

Theorem 2.10. Let $f: X \to Y$ be a mapping and $X = A \cup B$, where A = S(A) and B = S(B). If $f|_A$ and $f|_B$ are f-a-c-continuous at $x_\lambda \in Fp(A \cap B)$, then f is f-a-c-continuous at x_λ .

Proof. Omitted.

Theorem 2.11. Let $f: X \to Y$ be a mapping and X a fuzzy compact space. If the graph mapping $g: X \to X \times Y$ defined by g(x) = (x, f(x)) for each $x \in X$ is f-a-c-continuous, then f is f-a-c-continuous.

Proof. Omitted.

3. Further Results.

Lemma 3.1. For any fts (Y,\mathcal{T}) , let \mathfrak{B} be the family of all the fuzzy regularly open sets in Y having fuzzy compact complement. Then \mathfrak{B} is a base for a fuzzy topology \mathcal{T}_{\bullet} on Y. In this case, \mathcal{T}_{\bullet} is called fuzzy regular compact complement topology on Y by \mathcal{T} .

Lemma 3.2. Let (Y,\mathcal{T}) be a fts and let \mathcal{T}_* the fuzzy regular compact complement topology on Y by \mathcal{T} . Let $f: X \to (Y,\mathcal{T})$ be a mapping at $f_*: X \to (Y,\mathcal{T}_*)$ a mapping defined by $f_*(x) = f(x)$ for each $x \in X$. Then; (1) $\mathcal{T}_* \subset \mathcal{T}$.

- (2) f is f-a-c-continuous iff f_* is f-continuous.
- (3) $id:(Y,\mathcal{T})\to (Y,\mathcal{T}_*)$ is f-continuous and $id^{-1}:(Y,\mathcal{T}_*)\to (Y,\mathcal{T})$ is f-a-c-continuous.

Proof. Omitted.

Theorem 3.3. For any (Y,\mathcal{T}) , the space (Y,\mathcal{T}_*) is fuzzy compact.

Proof. Omitted.

REFERENCES

- K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy continuity, J.Math. Anal. Appl. 82 (1981), 14 32..
- 2. Kul Hur, Ju Ran Moon and Jang Hyun Ryou, A note on fuzzy C-continuous mapping, K.F.I.S. 7-2 (1997), free print.
- 3. Suk Geun Hwang, Almost C-continuous function, Korean Math. Soc. 14-2 (1978), 229 234.
- 4. Takashi Noiri, Properties of almost C-continuous function, Korean Math. Soc. 15-2 (1979), 109 115.