• Title/Summary/Keyword: fusiforme

Search Result 136, Processing Time 0.022 seconds

Effects of Hizikia fusiforme Fractions on Melanin Synthesis in B16F10 Melanoma Cells (톳 분획물이 B16F10 흑색종 세포에서의 멜라닌합성에 미치는 영향 연구)

  • Choi, Eun Ok;Kim, Hyang Suk;Han, Min Ho;Choi, Yung Hyun;Park, Cheol;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1495-1500
    • /
    • 2013
  • The objective of this study was to evaluate the anti-melanogenic effects of Hizikia fusiforme (HF) fractions in ${\alpha}$-melanocyte stimulating hormone-induced B16F10 mouse melanoma cells. Ethanol extractions of Hizikia fusiforme (EEHF) were subjected to fraction by using dichloromethane (CFHF), ethyl acetate (EAFHF), butanol (BFHF), and water (WFHF). EEHF, CFHF, and EAFHF inhibited tyrosinase activity and melanin synthesis in B16F10 mouse melanoma cells in a dose-dependent manner. The melanin contents were inhibited by 40.5% and 33.2% in response to treatment with 50 ${\mu}g/ml$ of EEHF and CFHF, respectively. In addition, tyrosinase activities showed a 53.3% and 54.1% reduction in treatment with 50 ${\mu}g/ml$ of EEHF and CFHF. Western blotting analysis showed that EEHF, CFHF, and EAFHF inhibited tyrosinase, TRP-1, TRP-2, and MITF expression in a dose-dependent manner. In conclusion, these findings indicate that ethanol and dichloromethane fractions of Hizikia fusiforme, which inhibit melanin synthesis and tyrosinase activity, are effective skin-whitening agents.

Apoptosis Induction of Human Breast Carcinoma Cells by Ethyl Alcohol Extract of Hizikia fusiforme (Apoptosis 유도에 의한 톳 ethyl alcohol 추출물의 인체 유방암세포 증식 억제)

  • Jung, Sun-Hwa;Hwang, Won-Deuk;Nam, Taek-Jeong;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1581-1590
    • /
    • 2009
  • Hizikia fusiforme is a kind of brown edible seaweed that mainly grows in the temperate seaside areas of the northwest pacific, including Korea, Japan and China, and has been widely used as a health food for hundreds of years. Recently, H. fusiforme has been known to exert pharmacological activities including antioxidant, antimutagenic and anticoagulant activities. However, the molecular mechanisms of H. fusiforme in malignant cells have not been clearly elucidated yet. In this study, the effects of ethyl alcohol extract of H. fusiforme (EAHF) on the anti-proliferative effects of MDA-MB-231 and MCF-7 human breast cancer cells were investigated. EAHF treatment resulted in a concentration-dependent growth inhibition by including apoptosis in MDA-MB-231 cells and G1 phase arrest in MCF-7 cells, which could be proved by MTT assay, DAPI staining, agarose gel electrophoresis and flow cytometry analysis. In MDA-MB-231 cells, the increase in apoptosis induced by EAHF treatment correlated with up-regulation of pro-apoptotic Bax expression. EAHF treatment induced the proteolytic activation of caspase-3 and caspase-9, and a concomitant inhibition of poly (ADP-ribose) polymerase, $\beta$-catenin, phospholipase-${\gamma}1$ protein and DNA fragmentation factor 45/inhibitor of caspase-activated DNase. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of H. fusiforme.

Inhibition of Cell Invasion by Ethyl Alcohol Extracts of Hizikia fusiforme in AGS Human Gastric Adenocarcinoma Cells (AGS 인체 위암세포에서 톳 에탄올 추출물에 의한 침윤성 저해)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1784-1791
    • /
    • 2010
  • In this study, we investigated the effects of ethyl alcohol extracts of Hizikia fusiforme (EHF) on the correlation between tightening of tight junctions (TJs) and anti-invasive activity in human gastric adenocarcinoma AGS cells. Inhibitory effects of EHF on cell proliferation, motility, and invasiveness were found to be associated with increased tightness of the TJs, which was demonstrated by an increase in transepithelial electrical resistance. Activities of matrix metalloprotease (MMP)-2 and -9 in AGS cells were dose-dependently inhibited by treatment with EHF, and this was also correlated with a decrease in expression of their mRNA and proteins; however, tissue inhibitor of metalloproteinase (TIMP)-1 and -2 mRNA levels were increased. Additionally, immunoblotting results indicated that EHF repressed the levels of claudin proteins (claudin-1, -3, and -4), major components of TJs that play key roles in control and selectivity of paracellular transport. Furthermore, EHF decreased expression of insulin such as growth factor-1 receptor proteins, while concurrently increasing that of thrombospondin-1 and E-cadherin. In conclusion, these results suggest that EHF treatment may inhibit tumor cell motility and invasion, and therefore act as a dietary source to decrease the risk of cancer metastasis.

Marine Algal Flora and Community Structure at Gwanmaedo and Yeongsando, Korea (한국 남서해안 관매도와 영산도의 해조상 및 군집구조)

  • Han, Su Jin;Jeon, Da Vine;Lee, Jung Rok;Na, Yeon Ju;Park, Seo Kyoung;Choi, Han Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • Seasonal variations in seaweed communities were examined at Gwanmaedo and Yeongsando, Korea, from May 2014 to February 2015. Eighty-nine species were identified, including 11 green, 20 brown and 58 red algae. Seventy-three and 74 species were identified at Gwanmaedo and at Yeongsando, respectively. Sargassum thunbergii and Myelophycus simplex were the dominant species, comprising 60.89 and 39.50% of total biomass, respectively, and S. fusiforme was subdominant at the two sites. Of six functional seaweed forms, the coarsely-branched form was the most dominant, forming about 43% of the species number at Gwanmaedo and Yeongsando. Seasonal seaweed biomasses ranged between 53.10 and 172.85 g/m2 (average 93.57 g dry wt./m2) and between 83.11 and 176.20 g (138.21 g/m2) at Gwanmaedo and Yeongsando, respectively. The vertical distribution from the high to low intertidal zone was S. thunbergii and Gloiopeltis furcata; M. simplex and S. thunbergii; and S. fusiforme at Gwanmaedo. Seaweed zonation was distinct at Yeongsando, with S. thunbergii and Gelidiophycus freshwateri; M. simplex and S. thunbergii; and S. thunbergii and S. fusiforme. Seaweed biomass, evenness index (J'), and diversity index (H') values were greater at Yeongsando (138.21 g/m2, 0.51, 2.18 respectively) than at Gwanmaedo (93.57 g/m2, 0.48, 2.04), indicating that the seaweed community at Yeongsando is more stable than that at Gwanmaedo.

Protective effect of Hizikia fusiforme on radiation-induced damage in splenocytes (방사선을 조사한 마우스에서 비장세포에 대한 톳의 보호 작용)

  • Kim, Areum;Bing, So Jin;Cho, Jinhee;Ahn, Ginnae;Lee, Ji-Hyeok;Jeon, You-Jin;Lee, Byung-Gul;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • The immune system is specifically sensitive to oxidative stress induced by ionizing radiation because of its rapid proliferative activity. For this reason, an instructive immune system is one of the best ways to minimize side effects, such immunodeficiency, of gamma radiation. Over the past few decades, several natural plants with antioxidant and immunomodulatory properties have been identified as adjuncts for nontoxic and successful radiotherapy. Hizikia fusiforme extract (HFE) containing plentiful dietary fiber and fucoidan is known for its instructive antioxidant capacity, immunomodulation abilities, and immune activation. In this study, we determined whether HFE protects radiosensitive immune cells from gamma radiation-induced damage. C57BL/6 mice were irradiated with gamma-ray. The effect of HFE on the ionizing radiation damage of immune cells was then evaluated with an MTT assay, 3H-thymidine incorporation assay, and PI staining. We found that HFE stimulated the proliferation of gamma-ray irradiated immune cells without cytotoxic effects. We also observed that HFE not only decreased DNA damage but also reduced gamma radiation-induced apoptosis of the immune cells. Our results suggest that HFE can protect immune cells from gamma-ray damage and may serve as an effective, non-toxic radioprotective agent.