• 제목/요약/키워드: fungi growth inhibition

검색결과 196건 처리시간 0.024초

Evaluation of Rhizobacterial Isolates for Their Antagonistic Effects against Various Phytopathogenic Fungi (식물 근권에서 분리한 미생물의 식물병원성 진균에 대한 길항효과 검정)

  • Kim, Yun Seok;Kim, Sang woo;Lamsal, Kabir;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • 제44권1호
    • /
    • pp.36-47
    • /
    • 2016
  • This study was conducted to evaluate five different strains of rhizobacterial isolates viz. PA1, PA2, PA4, PA5 and PA12 for biological control against Colletotrichum acutatum, C. coccodes, C. gloeosporioides, C. dematium, Botrytis cinerea, Rhizoctonia solani, Sclerotinia minor and Fusarium sp. In vitro inhibition assay was performed on three different growth mediums, potato dextrose agar (PDA), tryptic soy agar (TSA), and PDA-TSA (1:1 v/v) for the selection of potential antagonistic isolates. According to the result, isolate PA2 showed the highest inhibitory effect with 65.5% against C. coccodes on PDA and with 96.5% against S. minor on TSA. However, the same isolate showed the highest inhibition with 58.5% against C. acutatum on PDA-TSA. In addition, an in vivo experiment was performed to evaluate these bacterial isolates for biological control against fungal pathogens. Plants treated with bacteria were analyzed with phytopathogens and plants inoculated with phytopathogens were treated with isolates to determine the biological control effect against fungi. According to the result, all five isolates tested showed inhibitory effects against phytopathogens at various levels. Mode of action of these rhizobacterial isolates was evaluated with siderophore production, protease assay, chitinase assay and phosphate solubilizing assay. Bacterial isolates were identified by 16S rDNA sequencing, which showed that isolates PA1 and PA2 belong to Bacillus subtilis, whereas, PA4, PA5, and PA12 were identified as Bacilus altitudinis, Paenibacillus polymyxa and Bacillus amyloliquefaciens, respectively. Results of the current study suggest that rhizobacterial isolates can be used for the plant growth promoting rhizobacteria (PGPR) effect as well as for biological control of various phytopathogens.

Optimal Culture Conditions for Penicillium rubefaciens NNIBRFG5039 Possessing Antimicrobial Activity (항균활성 보유 Penicillium rubefaciens NNIBRFG5039의 최적배양 조건)

  • Hwang, Hye Jin;Mun, Hye Yeon;Hwang, Buyng Su;Nam, Young Ho;Chung, Eu Jin
    • The Korean Journal of Mycology
    • /
    • 제48권1호
    • /
    • pp.15-27
    • /
    • 2020
  • In screening for antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) KCCM 40510 and Bacillus cereus KCTC 3624, NNIBRFG5039 was isolated from the air in Sangju-si, Gyeongsangbuk-do. Based on a high sequence similarity of the internal transcribed spacer (ITS) region, NNIBRFG5039 was determined to be closely related to Penicillium rubefaciens CBS 139145. The optimal media, initial pH, and temperature for mycelial growth and antimicrobial activity of P. rubefaciens NNIBRFG5039 were determined as follows: potato dextrose broth (PDB), pH 6.5, and 30℃, respectively. Under the optimal culture conditions, maximum mycelial growth (12.4 g L-1) and antibacterial activity (7.5 mm zone of inhibition against MRSA KCCM 40510, and 5.0 mm zone of inhibition against B. cereus KCTC 3624) were observed in a 5 L stirred-tank fermenter. We also isolated the antimicrobial compound from an ethyl acetate fraction, and its chemical structure was identified as (S)-6-hydroxymellein (1) by ESI-MS, 1H-NMR, and 13C-NMR. Consequently, the extract from P. rubefaciens NNIBRFG5039 may be used in functional materials for antimicrobial-related applications.

Cultural Characters, Nutrition of the Colletotrichum spp. Isolated from Anthracnose of Lycium chinense and Effect of Fungicides on Disease Incidence (구기자(枸杞子) 탄저병균(炭疽病菌)의 배양적(培養的) 성질(性質), 영양(營養) 및 탄저병(炭疽病) 발병(發病)에 미치는 약제(藥劑)의 영향(影響))

  • Lee, Je Hyeon;Yu, Seung Hun;Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • 제13권1호
    • /
    • pp.52-61
    • /
    • 1986
  • Mycelial growth of Colletotrichun dematium and C. gloeosporioides isolated from anthracnose of Lycium chinense was favorable on V-8 Juice Agar media and Oatmeal Agar media of the four different media tested. Sporulation of C. dematium was favorable on PDA media and V-8 Juice Agar media and that of C. gloeosporioides was favorable on all media tested. The optimum temperature for mycelial growth of C. gloeosporioides and C. dematium was $25^{\circ}C$ and $28^{\circ}C$, respectively and sporulation of the fungi was stimulated under alternating NUV light and darkness. Of the seven nitrogen sources tested, gelatin was the most favorable for mycelial growth of C. gloeosporioides and glycin and gelatin were favorable for that of C. dematium. Of the eleven carbon sources tested, dextrin and sorbitol were favorable for mycelial growth of C. gloeosporioides and dextrin was the most favorable for that of C. dematium. Among the eleven fugicides tested, Benomyl, Folpet, Dithianon, Carbendazim and S-3308L were found superior for the inhibition of mycelial growth and spore germination of the fungi. They were, also, found superior for the control of anthracnose disease of L. chinense when they were applied to the plants in the field.

  • PDF

Antifungal Activity on the Water Extracts of Five Fagaceae Plants (참나무과 수목 5종 수용성 추출물의 항균활성)

  • Moon, Sang-Ho;Song, Chang-Khil;Kim, Tae-Keun;Oh, Dong-Eun;Kim, Hyoun-Chol
    • Korean Journal of Organic Agriculture
    • /
    • 제25권2호
    • /
    • pp.295-310
    • /
    • 2017
  • This study investigated the growth of five phytopathogenic fungi including Colletotrichum gloeosporioides, Diaporthe citri, Phytophthora capsici and others according to different concentrations of water extract in order to provide reference data for developing environment-friendly agricultural materials using five native Fagaceae species including Quercus acuta, Quercus salicina, Quercus glauca, Quercus gilva and Castanopsis cuspidata var. sieboldii. As the concentration of aqueous extracts of Fagaceae increased according to donor plants, the mycelial growth of phytopathogens showed a decreasing tendency. Differences were found in the degree of inhibition according to types of donor plants and pathogenic fungi. Diaporthe citri, Phytophthora capsici, Pythium graminicola on the water extract of Castanopsis cuspidata var. sieboldii inhibited mycelial growth by 84% in 25% of the treatment group and by 87% in more than half of the treatment group. The water extract of Quercus acuta was found to have no inhibitory effect against the mycelial growth of Diaporthe citri. The aqueous extracts of Quercus salicina, Quercus glauca and Quercus gilva insignificantly inhibited mycelial growth by approximately 15%. The total phenolic content of receptor plants exhibiting antifungal activity was highest in Castanopsis cuspidata var. sieboldii with a content of 22.32 mg/g phenols, followed by Quercus salicina with 8.32 mg/g, Quercus glauca with 6.83 mg/g, Quercus gilva with 5.95 mg/g, and Quercus acuta with 5.24 mg/g. The aqueous extracts of Castanopsis cuspidata var. sieboldii among the five Five Fagaceae Plants of were the most effective antifungal activity.

Studies on Antifungal Effect of Polyphosphate (Polyphosphate의 진균 성장 억제 작용에 관한 연구)

  • Chee, Hee-Youn;Kim, Soon-Young
    • The Korean Journal of Mycology
    • /
    • 제29권2호
    • /
    • pp.104-109
    • /
    • 2001
  • The antifungal effects of polyphosphates on growth of Candida albican and Trichophyton mentagrophytes were studied. The polyphosphates with chain length of 15, 45, and 75 were inhibitory to growth of fungi whereas no inhibition was shown by pyrophosphate. As chain length increase, the more inhibitory effect of the polyphosphates on fungal growth was observed. The concentration of polyphosphate at $800\;{\mu}g/ml$ completely inhibited the growth of fungus. Supplementation of the medium with $Mg^{2+}\;and\;Ca^{2+}$ reduced inhibitory effect of polyphosphate on growth of C. albican treatment of C. albican with polyphosphate, the release of nucleic acid out of cell was observed. When C. albican exposed to polyphosphate were examined, profound changes of cell morphology such as cell swelling and surface blebs were observed. In addition, propidium iodide, membrane impermeable dye, stained the nucleus of C. albican cell treated with polyphosphate. Therefore, it is proposed that the antifungal activity of polyphosphate might be related with its chelation effect to essential cation components of fungal cell wall or membrane.

  • PDF

Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato

  • Rattana Pengproh;Thanwanit Thanyasiriwat;Kusavadee Sangdee;Juthaporn Saengprajak;Praphat Kawicha;Aphidech Sangdee
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.430-448
    • /
    • 2023
  • Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.

Rhizospheric-Derived Nocardiopsis alba BH35 as an Effective Biocontrol Agent Actinobacterium with Antifungal and Plant Growth-Promoting Effects: In Vitro Studies

  • Mohamed H. El-Sayed;Abd El-Nasser A. Kobisi;Islam A. Elsehemy;Mohamed A. El-Sakhawy
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권5호
    • /
    • pp.607-620
    • /
    • 2023
  • The biocontrol approach using beneficial microorganisms to control crop diseases is becoming an essential alternative to chemical fungicides. Therefore, new and efficient biocontrol agents (BCA) are needed. In this study, a rhizospheric actinomycete isolate showed unique and promising antagonistic activity against three of the most common phytopathogenic fungi, Fusarium oxysporum MH105, Rhizoctonia solani To18, and Alternaria brassicicola CBS107. Identification of the antagonistic strain, which was performed according to spore morphology and cell wall chemotype, suggested that it belongs to the Nocardiopsaceae. Furthermore, cultural, physiological, and biochemical characteristics, together with phylogenetic analysis of the 16S rRNA gene (OP869859.1), indicated the identity of this strain to Nocardiopsis alba. The cell-free filtrate (CFF) of the strain was evaluated for its antifungal potency, and the resultant inhibition zone diameters ranged from 17.0 ± 0.92 to 19.5 ± 0.28 mm for the tested fungal species. Additionally, the CFF was evaluated in vitro to control Fusarium wilt disease in Vicia faba using the spraying method under greenhouse conditions, and the results showed marked differences in virulence between the control and treatment plants, indicating the biocontrol efficacy of this actinomycete. A promising plant-growth promoting (PGP) ability in seed germination and seedling growth of V. faba was also recorded in vitro for the CFF, which displayed PGP traits of phosphate solubilization (48 mg/100 ml) as well as production of indole acetic acid (34 ㎍/ml) and ammonia (20 ㎍/ml). This study provided scientific validation that the new rhizobacterium Nocardiopsis alba strain BH35 could be further utilized in bioformulation and possesses biocontrol and plant growth-promoting capabilities.

Appropriate Soil Heat Treatment Promotes Growth and Disease Suppression of Panax notoginseng by Interfering with the Bacterial Community

  • Li, Ying-Bin;Zhang, Zhi-Ping;Yuan, Ye;Huang, Hui-Chuan;Mei, Xin-Yue;Du, Fen;Yang, Min;Liu, Yi-Xiang;Zhu, Shu-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.294-301
    • /
    • 2022
  • In our greenhouse experiment, soil heat treatment groups (50, 80, and 121℃) significantly promoted growth and disease suppression of Panax notoginseng in consecutively cultivated soil (CCS) samples (p < 0.01), and 80℃ worked better than 50℃ and 121℃ (p < 0.01). Furthermore, we found that heat treatment at 80℃ changes the microbial diversity in CCS, and the inhibition ratios of culturable microorganisms, such as fungi and actinomycetes, were nearly 100%. However, the heat-tolerant bacterial community was preserved. The 16S rRNA gene and internal transcribed spacer (ITS) sequencing analyses indicated that the soil heat treatment had a greater effect on the Chao1 index and Shannon's diversity index of bacteria than fungi, and the relative abundances of Firmicutes and Proteobacteria were significantly higher than without heating (80 and 121℃, p < 0.05). Soil probiotic bacteria, such as Bacillus (67%), Sporosarcina (9%), Paenibacillus (6%), Paenisporosarcina (6%), and Cohnella (4%), remained in the soil after the 80℃ and 121℃ heat treatments. Although steam increased the relative abundances of most of the heat-tolerant microbes before sowing, richness and diversity gradually recovered to the level of CCS, regardless of fungi or bacteria, after replanting. Thus, we added heat-tolerant microbes (such as Bacillus) after steaming, which reduced the relative abundance of pathogens, recruited antagonistic bacteria, and provided a long-term protective effect compared to the steaming and Bacillus alone (p < 0.05). Taken together, the current study provides novel insight into sustainable agriculture in a consecutively cultivated system.

A Study on the Antifungal Properties of Ranunculaceae Herbal Medicines (미나리아재비과 한약재의 항진균성 검증 및 비교 연구)

  • Jae-yeoup Lim;Sang Ki Choi
    • Journal of Life Science
    • /
    • 제34권6호
    • /
    • pp.393-398
    • /
    • 2024
  • The purpose of this study was to verify the antifungal properties of various herbal medicines belonging to the Ranunculaceae family and to find an extraction method effective in inhibiting fungal growth. When antifungal activity was measured in a liquid medium with extracts obtained by either hot water extraction or organic solvent extraction of the herbal medicines Clematis apiifolia, Coptis chinensis, and Pusatilla chinensis, effective results were obtained from the chloroform extract. In addition, fungal growth inhibition experiments were performed on unicellular fungi, Candida albicans, Candida tropicalis, and Candida lusitaniae, and on filamentous fungi, such as Pythium ultimum, Aspergillus fumigatus, and Fusarium oxysporum, using disk diffusion experiments on solid media. It was confirmed that P. chinensis extract has excellent antifungal properties against Candida spp. and C. apiifolia extract against filamentous mold. Finally, GC-MS analysis was performed to explore the useful antifungal substances present in the extract. As a result of the study, thurbergenone from C. apiifolia and 16-hydroxycleroda-3, 13(14)-dien-15, 16-olide (16-HCDO) from C. chinensis were confirmed as antifungal candidates. In conclusion, it was confirmed that C. apiifolia, C. chinensis, and P. chinensis have antifungal activity against various fungi, and in GC-MS analysis, all herbal medicines were confirmed to have different antifungal candidates. These results indicate that the Ranunculaceae family has evolved in several directions for fungal resistance traits.

The Antimicrobial Activity of Lysozyme against the Microorganisms Causing Conjunctivitis and/or Keratitis (각·결막염 유발균에 대한 Iysozyme의 항균활성)

  • Kim, Dae Nyoun;Park, Eun Kyoo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • 제2권1호
    • /
    • pp.85-90
    • /
    • 1997
  • The cornea and conjunctiva of the human eye are exposed to external environment and thus are damageable. If the damaged part is infected with some pathogenic microorganisms. serious visual loss may be occured by inflammation. Keratitis or conjunctivitis does not always occur if the eyes are routinely exposed to pathogenic factors because lysozyme in human tears has antimicrobial activity against the microorganisms. 10 this study we have selected 5 strains causing keratitis and/or conjunctivitis. and cultured them in the optimum media. And then we have estimated the growth inhibition of the strains with the addition of various concentration of lysozyme to media to investigate the antimicrobial activity of lysozyme. The results are as follows. The growth of the strains were decreased according to the increase of lysozyme concentration. The growth of Pseudomonas. Neisseria. Klebsiella and Staphylococcus were inhibited 43%, 41%, 35% and 22% respectively by 1 mM concentration of lysozyme. The susceptibility of the gram-negative bacteria to lysozyme is 1.5~2 times higher than the Staphylococcus which is gram-positive bacteria in 1 mM concentration of lysozyme. But lysozyme inhibited the growth of Fusarium which is fungi slightly.

  • PDF