DOI QR코드

DOI QR Code

항균활성 보유 Penicillium rubefaciens NNIBRFG5039의 최적배양 조건

Optimal Culture Conditions for Penicillium rubefaciens NNIBRFG5039 Possessing Antimicrobial Activity

  • 황혜진 (국립낙동강생물자원관 균류연구팀) ;
  • 문혜연 (국립낙동강생물자원관 균류연구팀) ;
  • 황병수 (국립낙동강생물자원관 동식물활용연구팀) ;
  • 남영호 (국립낙동강생물자원관 환경미생물연구팀) ;
  • 정유진 (국립낙동강생물자원관 환경미생물연구팀)
  • Hwang, Hye Jin (Fungi Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR)) ;
  • Mun, Hye Yeon (Fungi Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR)) ;
  • Hwang, Buyng Su (Animal&Plant Utilization Team, Animal&Plant Research Department, Nakdonggang National Institute of Biological Resources (NNIBR)) ;
  • Nam, Young Ho (Environmental Microbiology Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR)) ;
  • Chung, Eu Jin (Environmental Microbiology Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR))
  • 투고 : 2020.01.08
  • 심사 : 2020.03.26
  • 발행 : 2020.03.31

초록

본 연구에서는 methicillin resistant Staphylococcus aureus subsp. aureus (MRSA) KCCM 40510 및 Bacillus cereus KCTC 3624 균주에 대한 항균활성을 보유한 균류 Penicillium rubefaciens NNIBRFG5039를 경북 상주시 도남동 공기 중으로부터 분리·동정하였고, 배양조건에 따른 균사체 생육 및 항균활성을 비교하였다. 그 결과, P. rubefaciens NNIBRFG5039는 PDB 배지, 배양온도 30℃, 초기 pH 6.5로 배양하였을 때 항균활성이 가장 높게 나타나는 것을 확인하였다. 최적조건하에서 5L fermenter를 이용하여 배양시간에 따른 균사체 건조중량 및 항균활성을 비교한 결과, 배양 5일째에 생장 및 항균활성이 가장 높았다. P. rubefaciens NNIBRFG5039의 배양여액의 항균활성 스펙트럼을 조사한 결과, methicillin-resistant Staphylococcus aureus subsp. aureus CCARM 3089·3090·3091·3095와 KCCM 40510, Bacillus cereus KCTC 3624, B.subtilis KACC 10111, Filobasidium neoformans KCTC 7902, Enterococcus faecalis KCCM 11814에 대해서도 항균활성을 가지는 것을 확인하였다. 또한, P. rubefaciens NNIBRFG5039의 배양여액으로부터 항균활성 후보물질을 각종 크로마토그라피법으로 순수분리하고, NMR과 ESI-MS 등의 기기분석을 실시하여 구조를 (S)-6-hydroxymellein (1)으로 동정하였다.

In screening for antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) KCCM 40510 and Bacillus cereus KCTC 3624, NNIBRFG5039 was isolated from the air in Sangju-si, Gyeongsangbuk-do. Based on a high sequence similarity of the internal transcribed spacer (ITS) region, NNIBRFG5039 was determined to be closely related to Penicillium rubefaciens CBS 139145. The optimal media, initial pH, and temperature for mycelial growth and antimicrobial activity of P. rubefaciens NNIBRFG5039 were determined as follows: potato dextrose broth (PDB), pH 6.5, and 30℃, respectively. Under the optimal culture conditions, maximum mycelial growth (12.4 g L-1) and antibacterial activity (7.5 mm zone of inhibition against MRSA KCCM 40510, and 5.0 mm zone of inhibition against B. cereus KCTC 3624) were observed in a 5 L stirred-tank fermenter. We also isolated the antimicrobial compound from an ethyl acetate fraction, and its chemical structure was identified as (S)-6-hydroxymellein (1) by ESI-MS, 1H-NMR, and 13C-NMR. Consequently, the extract from P. rubefaciens NNIBRFG5039 may be used in functional materials for antimicrobial-related applications.

키워드

참고문헌

  1. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenza. Bull World Health Organ 2001;79:780-90.
  2. Yee C, Biek D, Karause K, Williams G. Ceftarolin: A cephalosporin with anti-MRSA activity. Clin Microbiol Newsl 2011;33:161-9. https://doi.org/10.1016/j.clinmicnews.2011.10.001
  3. Singh R, Kumar M, Mittal A, Mehta PK. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 2017;7:15.
  4. Kim DY, Bae SM, Han SM, Lee JS. Screening of potent anti-dementia acetylcholinesterase inhibitor-containing edible mushroom Pholiota adiposa and the optimal extraction conditions for the acetylcholinesterase inhibitor. Kor J Mycol 2016;44:314-7. https://doi.org/10.4489/KJM.2016.44.4.314
  5. Bae SM, Han SM, Lee JS. Screening of anti-inflammatory compound-producing wild yeasts and their microbiological characteristics. Kor J Mycol 2017;45:212-23. https://doi.org/10.4489/KJM.20170025
  6. Jung JH, Chang HC. Bacillus polyfermenticus CJ9, isolated from meju, showing antifungal and antibacterial activities. Korean J Microbiol Biotechnol 2009;37:340-9.
  7. Grijseels S, Nielsen JC, Nielsen J, Larsen TO, Frisvad JC, Nielsen KF, Frandsen RJN, Workman M. Physiological characterization of secondary metabolite producing Penicillium cell factories. Fungal Biol Biotechnol 2017;4:8. https://doi.org/10.1186/s40694-017-0036-z
  8. Oxford AE, Raistrick H, Simonart P. Studies in the biochemistry of micro-organisms: Griseofulvin, C17H17O6Cl, a metabolic product of Penicillium griseo-fulvum Dierckx. Biochem J 1939;33:240-8. https://doi.org/10.1042/bj0330240
  9. Gosio B. Sperimentate su culture pure di bacilli del carbonchio demonstrarano notevole potere antisettica. C R Accad Med Torino 1893;61:484.
  10. Brown AG, Srnale TC, King TJ, Hasenkamp R, Thompson RH. Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc Perkin 1 1976;11:1165-70.
  11. Florey HW, Jennings MA, Gilliver K, Sanders AG. Mycophenolic acid-an antibiotic from Penicillium brevicompactum Dierckx. Lancet 1946;247:46-9. https://doi.org/10.1016/S0140-6736(46)90242-5
  12. Frisvad JC, Filtenborg O. Terverticillate penicillia : Chemotaxonomy and mycotoxin production. Mycologia 1989;81:837-61. https://doi.org/10.2307/3760103
  13. Song X, Tu R, Mei X, Wu S, Lan B, Zhang L, Luo X, Liu J, Luo M. A mycophenolic acid derivative from the fungus Penicillium sp. SCSIO sof101. Nat Prod Res 2019;13:1-7.
  14. Kaleem S, Ge H, Yi W, Zhang Z, Wu B. Isolation, structural elucidation, and antimicrobial evaluation of the metabolites from a marine-derived fungus Penicillium sp. ZZ1283. Nat Prod Res 2019;23:1-9. https://doi.org/10.1080/14786410500463288
  15. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolke RH. Manual of clinical microbiology. 7th ed. Washington D.C.: ASM; 1999. p. 1527-39.
  16. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA. Identification and nomenclature of the genus Penicillium. Stud Mycol 2014;78:343-71. https://doi.org/10.1016/j.simyco.2014.09.001
  17. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  18. Schlingmann G, Roll DM. Absolute stereochemistry of unusual biopolymers from Ascomycete culture LL-W1278: Examples that derivatives of (S)-6-hydroxymellein are also natural fungal metabolites. Chirality 2005;17:S48-51. https://doi.org/10.1002/chir.20105
  19. Go IH, Kim KJ, Kim YH. Optimal Conditions for the production of (+)-Jasmonic acid by Diplodia gossypina ATCC10936. Kor J Microbiol 2006;42:210-5.
  20. Keller NP. Fungal secondary metabolism: Regulation, function and drug discovery. Nat Rev Microbiol 2019;17:167-80. https://doi.org/10.1038/s41579-018-0121-1
  21. Gerke J, Braus GH. Manipulation of fungal development as source of novel secondary metabolites for biotechnology. Appl Microbiol Biotechnol 2014;98:8443-55. https://doi.org/10.1007/s00253-014-5997-8
  22. Woo YJ, Jeong SY. Isolation and characterization of a marine bacterium, Pseudomonas sp. YJ-1 with anti-methicillin resistant Staphylococcus aureus activity. Korean J Environ Biol 2017;35:694-705. https://doi.org/10.11626/KJEB.2017.35.4.694
  23. Cardozo VF, Oliveira AG, Nishio EK, Perugini MR, Andrade CG, Silveira WD, Duran N, Andrade G, Kobayashi RK, Nakazato G. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob 2013;12:12. https://doi.org/10.1186/1476-0711-12-12
  24. Gebreyohannes G, Nyerere A, Bii C, Berhe Sbhatu D. Determination of antimicrobial activity of extracts of indigenous wild mushrooms against pathogenic organisms. Evid Based Complement Alternat Med 2019;6212-673.
  25. Shimada A, Kusano M, Takeuchi S, Fujioka S, Inokuchi T, Kimura Y. Aspterric acid and 6-hydroxymellein, inhibitors of pollen development in Arabidopsis thaliana, produced by Aspergillus terreus. Z Naturforsch C J Biosci 2002;57:459-64. https://doi.org/10.1515/znc-2002-5-610
  26. Xu L, Meng W, Cao C, Wang J, Shan W, Wang Q. Antibacterial and antifungal compounds from marine fungi. Mar Drugs 2015;13:3479-513. https://doi.org/10.3390/md13063479
  27. Silber J, Ohlendorf B, Labes A, Erhard A, Imhoff JF. Calcarides A-E, antibacterial macrocyclic and linear polyesters from a Calcarisporium strain. Mar Drugs 2013;11:3309-23. https://doi.org/10.3390/md11093309
  28. Elkhayat ES, Goda AM. Antifungal and cytotoxic constituents from the endophytic fungus Penicillium sp. Bull Fac Pharm Cairo Univ 2017;55:85-9. https://doi.org/10.1016/j.bfopcu.2017.03.001
  29. Hosoe T, Fukushima K, Takizawa K, Itabashi T, Kawahara N, Vidotto V, Kawai K. A new antifungal macrolide, eushearilide, isolated from Eupenicillium shearii. J Antibiot 2006;59:597-600. https://doi.org/10.1038/ja.2006.80
  30. Tonoi T, Inohana T, Sato T, Noda Y, Ikeda M, Akutsu M, Murata T, Maekawa Y, Tanaka A, Seki R, et al. Total synthesis and antimicrobial evaluation of 23-demethyleushearilide and extensive antimicrobial evaluation of all synthetic stereoisomers of (16Z,20E)-Eushearilide and (16E,20E)-Eushearilide. Molecules 2019;24:3437. https://doi.org/10.3390/molecules24193437
  31. Faver B, Hofbauer B, Hildering KS, Ryder NS. Comparison of in vitro activities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay. J Clin Microbiol 2003;41:4817-9. https://doi.org/10.1128/JCM.41.10.4817-4819.2003