• Title/Summary/Keyword: fungal enzyme

Search Result 257, Processing Time 0.028 seconds

Screening of Biodegradable Function of Indigenous Ligno-degrading Mushroom Using Dyes

  • Jang, Kab-Yeul;Cho, Soo-Muk;Seok, Soon-Ja;Kong, Won-Sik;Kim, Gyu-Hyun;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.53-61
    • /
    • 2009
  • The process of biodegradation in lingo-cellulosic materials is critically relevant to biospheric carbon. The study of this natural process has largely involved laboratory investigations, focused primarily on the biodegradation and recycling of agricultural by-products, generally using basidiomycetes species. In order to collect super white rot fungi and evaluate its ability to degrade lingo-cellulosic material, 35 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye. In the laccase enzymatic analysis chemical test, 33 white rot fungi and 2 brown rot fungi were identified. The degradation ability of polycyclic aromatic hydrocarbons (PAHs) according to the utilized environmental conditions was higher in the mushrooms grown in dead trees and fallen leaves than in the mushrooms grown in humus soil and livestock manure. Using Poly-R 478 dye to assess the PAH-degradation activity of the identified strains, four strains, including Agrocybe pediades, were selected. The activities of laccase, MnP, and Lip of the four strains with PAH-degrading ability were highest in Pleurotus incarnates. 87 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye on solid media. Using Poly-R 478 dye to assess the PAHdegrading activity of the identified strains, it was determined that MKACC 51632 and 52492 strains evidenced superior activity in static and shaken liquid cultures. Subsequent screening on plates containing the polymeric dye poly R-478, the decolorization of which is correlated with lignin degradation, resulted in the selection of a strain of Coriolus versicolor, MKACC52492, for further study, primarily due to its rapid growth rate and profound ability to decolorize poly R-478 on solid media. Considering our findings using Poly-R 478 dye to evaluate the PAH-degrading activity of the identified strains, Coriolus versicolor, MKACC 52492 was selected as a favorable strain. Coriolus versicolor, which was collected from Mt. Yeogi in Suwon, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP).

Isolation and Characterization of Cellulolytic Anaerobic Fungi from the Guts of the Hanwoo Cattle and the Korean Native Goat (한우 및 산양의 장내 섬유소 분해 혐기 곰팡이의 분리 및 특성 구명)

  • Kim, C.H.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.1019-1030
    • /
    • 2003
  • The study was conducted to isolate and identify highly fibrolytic anaerobic fungi from the guts of a Hanwoo steer and a Korean native goat, and then investigate the characterization of cellulolytic activity of an anaerobic fungus. Twenty-one anaerobic fungal colonies were isolated in the study, in which 16 colonies were isolated from the rumen contents of the Hanwoo steer and 5 colonies from the duodenal fluids of the Korean native goat. Four anaerobic fungi were selected based on higher cellulolytic enzyme activities to identify under a optical microscope. NLRI-M003 and -T004 belong to Neocallimastix genus and NLRI-M014 belongs to Piromyces genus based on the morphology of their thallus, sporangia, rhizoid and the number of flagella. NLRI-M001 appeared to be an unknown strain of anaerobic fungi due to its different morphology from existing types of anaerobic fungi, though the morpholgoy is similar to Orpinomyces sp. Supplementation of 2% anaerobic fungal culture(NLRI-M003) in rumen-mixed microorganisms increased in vitro DM degradability of rice straw and filter paper up to 4 and 11%, respectively, compared with non-supplementation(control). CMCase and xylanase activities in in vitro culture were also higher in 2% fungal supplementation than controls in both rice straw and filter paper substrates.

Bacterial and fungal community composition across the soil depth profiles in a fallow field

  • Ko, Daegeun;Yoo, Gayoung;Yun, Seong-Taek;Jun, Seong-Chun;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.271-280
    • /
    • 2017
  • Background: Soil microorganisms play key roles in nutrient cycling and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depths, we analyzed microbial activities and bacterial and fungal community composition in soils up to a 120 cm depth at a fallow field located in central Korea. To examine the vertical difference of microbial activities and community composition, ${\beta}$-1,4-glucosidase, cellobiohydrolase, ${\beta}$-1,4-xylosidase, ${\beta}$-1,4-N-acetylglucosaminidase, and acid phosphatase activities were analyzed and barcoded pyrosequencing of 16S rRNA genes (bacteria) and internal transcribed spacer region (fungi) was conducted. Results: The activity of all the soil enzymes analyzed, along with soil C concentration, declined with soil depth. For example, acid phosphatase activity was $125.9({\pm}5.7({\pm}1SE))$, $30.9({\pm}0.9)$, $15.7({\pm}0.6)$, $6.7({\pm}0.9)$, and $3.3({\pm}0.3)nmol\;g^{-1}\;h^{-1}$ at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1, and 17.5% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3, and 0.4% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7% at 15, 30, 60, 90, and 120 cm depths, respectively), a dominant fungal group at this site, showed no clear trend along the soil profile. Conclusions: Our results show that soil C availability can determine soil enzyme activity at different soil depths and that bacterial communities have a clear trend along the soil depth at this study site. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.

Characterization of Chitin Deacetylase Produced from Mucor rouxii (Mucor rouxii가 생산한 Chitin deacetylase의 특성)

  • SOHN Heung-Sik;PARK Seong-Min;SON Byung-Yil;CHOI Hyeon-Mee;LEE Keun-Tai
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.121-126
    • /
    • 1999
  • In order to degrade chitin by enzymatic hydrolysis, it is required from screening highly active deacetylase. To this end, we examined three fungal strains and it turned out that Mucor rouxii produced highly active deacetylase, this enzyme exhibited the highest enzymatic activity against colloidal chitin. The conditions for growing Mucor rouxii are as follows; the effective carbon source, nitrogen source, adequate initial pH, temperature and incubation time were $2\%$ glucose, $1.33\%$ yeast extract, $0.66\%$ pepton, 4.5, $25{\pm}2^{\circ}C$ and 48hr, respectively. The optimum pH and temperature for purified enzyme activity were 5.5 and $40^{\circ}C$, respectively. The purified enzyme was stable at pH ranging from 4.5 to 5.5. However, the enzyme activity was decreased to less than $50\%$ at pH blow 45 and above 7.5. At temperatures above $50^{\circ}C$, the enzyme activity was decreased remarkably. The enzyme was inhibited by LiC1, $HgCl_2$, and $BaCl_2$, but stimulated by $CaCl_2$ and $ZnC1_2$, The activity of purified enzyme was increased by L-cysteine and 2-mercaptoethanol, while decreased by O-phenanthroline, p-CMB, EDTA, and iodoacetate. The $K_m$ and the $V_{max}$ value of purified enzyme were $1.2\%$ and 59.5 U/mg, respectively. The deacetylation activity of purified enzyme was not detected at optimal reaction condition when chitin particle suspension was used.

  • PDF

Studies on the Conditions of Extracellular Phytase Production, by Aspergillus niger (Aspergillus niger에 의한 균본외 Phytase 생산조건에 관한 연구)

  • 김경환;양호석;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.2
    • /
    • pp.133-144
    • /
    • 1982
  • The distribution of acid phosphatase activity was investigated with 141 microorganisms from the type culture collection of Chong Kun Dang laboratory and the 41 strains isolated from natural sources. The phytase activity was detected mainly with fungal strains. A fungus isolated from soil and identified as Aspergillus niger had shown the highest phytase activity. The environmental conditions for the enzyme formation by the isolate and some properties of the enzyme were also studied. The results obtained were as follows: (1) The highest phytase production was observed when the fungus was cultivated at 28$^{\circ}C$ for 5 days in the corn starch based medium using the cells incubated at 34$^{\circ}C$ for 3 days as a seed. (2) The optimal initial pH of the culture medium was found to around 2 for the formation of phytase. (3) Sucrose was proved to be one of the most effective carbon sources tested for the enzyme production. (4) As an inorganic nitrogen source, potassium nitrate was found to give a good result in the production of phytase. (5) Synthesis of phytase was significantly increased by the supplement with 0.2 % corn steep liquor to the basal medium as an organic nitrogen source. (6) At the concentration of 40-80 mg inorganic phosphate per liter of the culture medium, the enzyme formation revealed the highest level. But as the phosphate was increased above this optimum concentration the phytase activity was drastically decreased although the cell density showed to be still increasing

  • PDF

Isolation of Potent Amylolytic Fungus Rhizopus oryzae from Nuruk (누룩으로부터 전분 분해 활성이 우수한 Rhizopus oryzae 균주의 분리)

  • Choi, Yeong-Hwan;Choi, Da-Hye;Park, Eun-Hee;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.376-382
    • /
    • 2016
  • The amylolytic enzyme activities of nuruks collected or produced in this study were examined. A maximum α-amylase activity of 24,747.1 ± 777.7 units/mg protein was obtained for a nuruk incubated at a relative humidity of 40% at 30℃. A nuruk matured at a relative humidity of 50% at 25℃ showed the highest glucoamylase acitivity. Among the 98 fungal strains isolated from the nuruk exhibiting the highest amylolytic enzyme activities, 26 strains of Aspergillus oryzae and 18 strains of Rhizopus oryzae were identified. Rhizopus oryzae MBF345 showed an α-amylase activity of 36,724.9 ± 10.2 units/mg protein and a glucoamylase activity of 4,911.8 ± 48.1 SP. These values were 1.7-fold and 1.4-fold greater, respectively, than those of the control strain. Strain MBF345 was deposited as KCTC46312 in the Korean Culture Type Collection.

Enhancement of Spermidine Content and Antioxidant Capacity by Modulating Ginseng Spermidine synthase in Response to Abiotic and Biotic Stresses

  • Parvin, Shohana;Lee, Ok-Ran;Sathiyaraj, Gayathri;Kim, Yu-Jin;Khorolragchaa, Altanzul;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.14-14
    • /
    • 2011
  • Polyamines (putrescine, spermidine and spermine) play pivotal roles in plant defense to different abiotic and biotic stresses. In order to understand the function of ginseng spermidine synthase gene, a key gene involved in biosynthesis of polyamines, transgenic plant was generated in Arabidopsis. The transgenic plants exhibited high levels of polyamines compared to the untransformed control plants. We investigated the tolerance capacity of transgenic plants to abiotic stresses such as salinity and copper stress. In addition, transgenic plants also showed increased resistance against one of the important fungal pathogens of ginseng, the wilt causing Fusarium oxysporum and one of important bacteria, bacterial blight causing Pseudomonas syringae. However, an activity of the polyamine catabolic enzyme, diamine oxidase (DAO) was increased significantly in F. oxysporum and P. syringae infected transgenic plant. Polyamine catabolic enzymes which may trigger the hypersensitive response (HR) by producing hydrogen peroxide ($H_2O_2$) seem act as an inducer of PR proteins, peroxidase and phenyl ammonium lyase activity. The transgenic plants also contained higher antioxidant enzyme activities, less MDA and $H_2O_2$ under salt and copper stress than the wild type, implying it suffered from less injury. These results strongly suggest an important role of spermidine as a signaling regulator in stress signaling pathways, leading to build-up of stress tolerance mechanisms.

  • PDF

Transgenic Strategy to Improve Stress Resistance of Crop Plants

  • Horvath, Gabor V.;Oberschall, Attila;Deak, Maria;Sass, Laszlo;Vass, Imre;Barna, Balazs;Kiraly, Zoltan;Hideg, Eva;Feher, Attila
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.61-68
    • /
    • 1999
  • Rapid accumulation of reactive oxygen species (ROS) and their toxic reaction products with lipids and proteins significantly contributes to the damage of crop plants under biotic and abiotic stresses. We have identified several stress activated alfalfa genes, including the gene of the alfalfa ferritin and a novel NADPH-dependent aldose/aldehyde reductase enzyme. Transgenic tobacco plants that synthesize alfalfa ferritin in vegetative tissues-either in its processed form in chloroplast or in the cytoplasmic non-processed form-retained photosynthetic function upon free radical toxicity generated by paraquat treatment and exhibited tolerance to necrotic damage caused by viral and fungal infections. We propose that by sequestering intracellular iron involved in generation of the very reactive hydroxyl radicals through a Fenton reaction, ferritin protects plant cells from oxidative damage. Our preliminary results with the other stress-inducable alfalfa gene (a NADPH-dependent aldo-keto reductase) indicate, that the encoded enzyme may play role in the stress response of the plant cells. These studies reveal new pathways in plants that can contribute to the increased stress resistance with a potential use in crop improvement.

  • PDF

Extracellular Triacylglycerol Lipases Secreted by New Isolate of Filamentous Fungus

  • Lusta, Konstantin A.;Woo, Sahng-Young;Chung, Il-Kyung;Sul, Ill-Whan;Park, Hee-Sung;Shin, Dong-Ill
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.832-838
    • /
    • 1999
  • Two different types of lipases (lipase I and lipase II) secreted into culture medium by Rhizopus sp. L-I were purified using a hydrophobic chromatography and were partially characterized. Both enzymes were monomeric as revealed by SDS-PAGE and gel filtration. The molecular masses of the enzymes were identified as 45 kDa (lipase I) and 69 kDa (lipase II). The isoelectric points were estimated to be 3.6 and 5.2 for lipase I and lipase II, respectively. pH and temperature activity optima for lipase I were as 7.5 and $50^{\circ}C$, respectively, whereas the corresponding parameters for lipase II were 6.0 and $45^{\circ}C$. The amino terminal sequences of lipase I and lipase II, determined by Edman degradation, were found to be Leu-Val-Met-Ile-Gln-Arg and Leu-Val-Met-Lys-Gln-Arg, respectively. By western blotting analysis, the two lipases were found to have a common antigenic determinant. Immuno-electron cytochemistry conducted with polyclonal anti-lipase I antibody indicated the enzyme located in both the periplasm and the adjacent vesicles of fungal hyphae. Fortunately, the sites on the cell envelope where lipase was exported into the culture medium was also identified.

  • PDF

Enzymatic Decolorization of Various Dyes by Trametes versicolor KCTC 16781 (Trametes versicolor KCTC 16781에 의한 다양한 염료의 색도제거 특성)

  • 박철환;이유리;김탁현;이명구;이병환;이진원;김상용
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.398-403
    • /
    • 2003
  • Due to the low biodegradability of dyes, conventional biological wastewater treatment systems are inefficient in treating dye wastewater. Various white-rot fungi were investigated for the decolorization of six industrial dyes (reactive blue 5, reactive blue 16, reactive black 5, acid black 52, reactive orange 16, and acid violet 43). Among ten fungi, T. versicolor KCTC 16781 was selected as a testing strain because this had the best performance of decolorization for six dyes from the results of the solid culture experiments. In liquid culture medium, T. versicolor KCTC 16781 decolorized over 96% of six dyes for 48 hrs. Laccase started to produce in the early stage of the culture, and showed the highest peak value of 2.3 U/mL in 24 hrs. Enzyme activity remained constant until the end of culture. Fungal decolorization is a promising alternative to replace or supplement present treatment process.