• Title/Summary/Keyword: fungal diseases

Search Result 346, Processing Time 0.023 seconds

Photosynthesis rates, growth, and ginsenoside contents of 2-yr-old Panax ginseng grown at different light transmission rates in a greenhouse

  • Jang, In-Bae;Lee, Dae-Young;Yu, Jin;Park, Hong-Woo;Mo, Hwang-Sung;Park, Kee-Choon;Hyun, Dong-Yun;Lee, Eung-Ho;Kim, Kee-Hong;Oh, Chang-Sik
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.345-353
    • /
    • 2015
  • Background: Ginseng is a semishade perennial plant cultivated in sloping, sun-shaded areas in Korea. Recently, owing to air-environmental stress and various fungal diseases, greenhouse cultivation has been suggested as an alternative. However, the optimal light transmission rate (LTR) in the greenhouse has not been established. Methods: The effect of LTR on photosynthesis rate, growth, and ginsenoside content of ginseng was examined by growing ginseng at the greenhouse under 6%, 9%, 13%, and 17% of LTR. Results: The light-saturated net photosynthesis rate ($A_{sat}$) and stomatal conductance ($g_{s}$) of ginseng increased until the LTR reached 17% in the early stage of growth, whereas they dropped sharply owing to excessive leaf chlorosis at 17% LTR during the hottest summer period in August. Overall, 6-17% of LTR had no effect on the aerial part of plant length or diameter, whereas 17% and 13% of LRT induced the largest leaf area and the highest root weight, respectively. The total ginsenoside content of the ginseng leaves increased as the LTR increased, and the overall content of protopanaxatriol line ginsenosides was higher than that of protopanaxadiol line ginsenosides. The ginsenoside content of the ginseng roots also increased as the LTR increased, and the total ginsenoside content of ginseng grown at 17% LTR increased by 49.7% and 68.3% more than the ginseng grown at 6% LTR in August and final harvest, respectively. Conclusion: These results indicate that 13-17% of LTR should be recommended for greenhouse cultivation of ginseng.

Haplotype Diversity and Durability of Resistance Genes to Blast in Korean Japonica Rice Varieties

  • Cho, Young-Chan;Jeung, Ji-Ung;Park, Hun-June;Yang, Chang-In;Choi, Yong-Hwan;Choi, In-Bae;Won, Yong-Jae;Yang, Sae-June;Kim, Yeon-Gyu
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.205-214
    • /
    • 2008
  • Blast disease caused by the fungal pathogen, Magnaporthe oryzae, is one of the most damaging diseases in rice. The use of resistant varieties is an effective measure to control the disease, however, many resistant varieties were broken down to their resistance effects by the differentiating of new virulent isolates. This study was done to analyze the haplotypes of 31 microsatellite markers linked to five major R genes and two QTLs and to identify the alleles for the putatively novel genes related to durable resistance to blast in 56 Korean japonica and four indica varieties. The 31 microsatellite markers produced 2 to 13 alleles(mean = 5.4) and had PICi values ranging from 0.065 to 0.860(mean=0.563) among the 60 rice accessions. Cluster analysis based on allele diversities of 31 microsatellite markers grouped into 60 haplotypes and ten major clusters in 0.810 genetic similarity. A subcluster IV-1 grouped of early flowering varieties harboring Piz and/or Pi9(t) on chromosome 6 and Pita/Pita-2 gene on chromosome 12. The other subcluster V-1 consisted of four stable resistance varieties Donghae, Seomjin, Palgong and Milyang20. The analysis of putative QTLs associated with seven blast resistance genes using ANOVA and linear regression showed high significance to blast resistance across regions and isolates in the markers of two genes Piz and/or Pi9(t) and Pita/Pita-2. These results illustrate the utility of microsatellite markers to identify rice varieties is likely carrying the same R genes and QTLs and rice lines with potentially novel resistant gene.

  • PDF

Characterization of the Rosellinia necatrix Transcriptome and Genes Related to Pathogenesis by Single-Molecule mRNA Sequencing

  • Kim, Hyeongmin;Lee, Seung Jae;Jo, Ick-Hyun;Lee, Jinsu;Bae, Wonsil;Kim, Hyemin;Won, Kyungho;Hyun, Tae Kyung;Ryu, Hojin
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.362-369
    • /
    • 2017
  • White root rot disease, caused by the pathogen Rosellinia necatrix, is one of the world's most devastating plant fungal diseases and affects several commercially important species of fruit trees and crops. Recent global outbreaks of R. necatrix and advances in molecular techniques have both increased interest in this pathogen. However, the lack of information regarding the genomic structure and transcriptome of R. necatrix has been a barrier to the progress of functional genomic research and the control of this harmful pathogen. Here, we identified 10,616 novel full-length transcripts from the filamentous hyphal tissue of R. necatrix (KACC 40445 strain) using PacBio single-molecule sequencing technology. After annotation of the unigene sets, we selected 14 cell cycle-related genes, which are likely either positively or negatively involved in hyphal growth by cell cycle control. The expression of the selected genes was further compared between two strains that displayed different growth rates on nutritional media. Furthermore, we predicted pathogen-related effector genes and cell wall-degrading enzymes from the annotated gene sets. These results provide the most comprehensive transcriptomal resources for R. necatrix, and could facilitate functional genomics and further analyses of this important phytopathogen.

Impact of Rhizosphere Competence of Biocontrol Agents upon Diseases Suppression and Plant Growth Promotion

  • Park, Chang-Seuk-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.27-49
    • /
    • 1994
  • Root colonization of biocontrol agents via seed treatment was investigated and a compatible combination, Gliocladium virens G872B and Pseudomonas putida Pf3, in colonizing cucumber rhizosphere was confirmed through the study. Much higher number of fungal and bacterial propagules were detected when two isolates were inoculated together. The presence of Pf3 in root system was greatly helpful to G872B to colonize at root tip. The mechanism of this phenomenon is partially elucidated through the results of in vitro experiments and the observations of scanning electron and fluorescence microscope. Addition of Pf3 cells resulted earlier germination of G872B conidia and increased mycelial growth. And the more number of germinated conidia on seed coat, the more vigorous hypal streching and sporulation on the root surface were observed in coinoculated treatment. The propagules of G872B on the cucumber root when they were challenged against the pathogenic Fusarium oxysporum, were even higher than that of G872B treated alone, and the magnitude of such a difference was getting grater toward the root ip and the population of F. oxysporum on the root was reduced by seed inoculation of G872B. The rhizosphere competence was obviously reflected to disease suppression and plant growth promotion that induced by the given isolate. Green house experiments revealed that the combined treatment provided long-term disease suppression with greater rate and the larger amount of fruit yield than single treatments. Through this study the low temperature growing Pseudomonas fluorescens M45 and MC07 were evaluated to apply them to the winter crops in field or plastic film house. In vitro tests reveal that M45 and MC07 inhibited the mycelial growth of Pythium ultimum, Rhizoctona solani and Phytophthora capsici and enhanced growth of cucumber cotyledon in MS agar. This effect was more pronounced when the bacteria were incubated at 14$^{\circ}C$ than at 27$^{\circ}C$. And disease suppression and plant growth promotion in green house were also superior at low temperature condition. Seed treatment of M45 or soil treatment of MC07 brought successful control of damping-off and enhanced seedling growth of cucumber. The combined treatment of two isolates was more effective than any single treatment.

  • PDF

Clinical Features and Surgical Treatment of Bacterial Brain Abscess

  • Jo, Sung-Dae;Kim, Eal-Maan;Lee, Chang-Young;Kim, In-Soo;Son, Eun-Ik;Kim, Dong-Won;Yim, Man-Bin
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.6
    • /
    • pp.391-396
    • /
    • 2007
  • Objective : This study was performed to review the clinical characteristics and operative results of brain abscess in order to define the therapeutic strategy for this disease. Methods : We reviewed the medical records and radiology images of brain abscess patients treated in our hospital during the last 16 years. A total of 35 cases included 23 males and 12 females, with the mean age of 48 years old. We excluded cases of postoperative, post traumatic, and fungal abscess. All patient underwent at least one surgical treatment such as stereotactic aspiration or craniotomy with excision. Results : Twenty seven [77.1%] patients presented with symptoms of increased intracranial pressure. The frontal lobe was the most common anatomical place, and streptococcal species were the most frequently encountered pathogens. The chronic pulmonary diseases and chronic otitis media are common underlying condition. Eighteen patients underwent stereotactic aspiration and 17 patients had excision of their abscess as an initial treatment. Seven patients had a repeated surgery, 6 of them had been treated with aspiration initially. At discharge, 60.0% patients showed a favorable outcome. Conclusion : The stereotactic drainage would be more suitable for the brain abscess located in deep and eloquent area. A large, solitary, and well-encapsulated lesion of superficial location could be best treated with complete excision, and this procedure was more definite because it is associated with less repeated surgery and showed more favorable outcome compared to aspiration surgery.

Cenangium Dieback Associated with Cenangium ferruginosum (Cenangium ferruginosum에 의한 소나무류 피목가지마름병)

  • Kim, Myoung-Ju;Kim, Kyung-Hee
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.361-368
    • /
    • 2009
  • Cenangium ferruginosum was known as the causal agent of dieback of pines including Pinus koraiensis and Pinus densiflora. Since the first report of the disease in Korea in 1989, a group dying occurred in Seoul, Gyeonggi, Kangwon and Chungbuk in 2007 spring. Although C. ferreginosum was known as a weak pathogen or a parasite, this disease caused in stressed pine by drought, wounding, extremely cold weather or unusual warm winter. In this study, we explained the features of cenangium dieback with the characteristics of pathogen to understand the trend of disease associated with the climatic change of the world. We collected pycnidia and apothecia from the diseased branches and stems of P. koraiensis and P. densiflora in Gyeonggi, Chungcheong and Gyeongsang province to characterization of pathogen. The fungal development on the diseased branches were observed and the isolates from pycnidia and apothecia were identified as Cenangium ferruginosum by their morphological characteristics and the molecular techniques.

Antagonistic Effects of Pseudomonas spp. against Turfgrass Pathogenic Soil Fungi (잔디 주요 토양 병해에 대한 토양세균 Pseudomonas spp.의 길항 효과)

  • Chang, Seog-Won;Chang, Tae-Hyun;Choi, Byung-Jin;Song, Jung-Hee;Park, Kyung-Sook;Rho, Yong-Taek
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.209-218
    • /
    • 2009
  • Bacterial isolates collected from rhizosphere of turfgrass showed strong in vitro antagonistic activities against a number of turfgrass soilborne pathogens such as Rhizoctonia cerealis, R. solani AG-1(1B), Sclerotinia homoeocarpa and Typhula incarnata. In vivo study, four bacterial isolates selected have control values over 60% against one or more turfgrass pathogenic fungi. The antagonistic effects of the bacterial isolates varied depending on fungal species, host plant, and disease pressure, indicating that control effects of the antagonists could be variable depending on field conditions. They were classified as belonging to the genus Pseudomonas species, based on morphological and biochemical characteristics as well as 16S rRNA analysis. The four bacterial isolates are under a study for finding proper cultural conditions and determination formulation type.

Chlorophyll a Fluorescence Parameters of Hulled and Hull-less Barley (Hordeum vulgare L.) DH Lines Inoculated with Fusarium culmorum

  • Warzecha, Tomasz;Skrzypek, Edyta;Adamski, Tadeusz;Surma, Maria;Kaczmarek, Zygmunt;Sutkowska, Agnieszka
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.112-124
    • /
    • 2019
  • Barley worldwide is affected seriously by Fusarium seedling blight (FSB) and Fusarium head blight (FHB) diseases caused by the Fusarium species. The objective of this study was to facilitate the resistance of hulled and hull-less barley at different growth stages to F. culmorum according to direct parameters: disease rating (DR), fresh weight of leaves and roots, kernel weight per spike, kernel number per spike, plump kernels, and indirect parameters - chlorophyll a fluorescence (CF). Plate assay, greenhouse and field tests were performed on 30 spring barley doubled haploid (DH) lines and their parents infected with Fusarium culmorum. Direct parameters proved that hulled genotypes show less symptoms. Most studied chlorophyll a fluorescence (CF) parameters (apart from DIo/CS - amount of energy dissipated from PSII for laboratory test, TRo/CS - amount of excitation energy trapped in PSII reaction centers, ETo/CS - amount of energy used for electron transport and RC/CS - number of active reaction centres in the state of fully reduced PSII reaction center in field experiment) were significantly affected by F. culmorum infection. In all experiments, hulled genotypes had higher values of CF parameters compared to hull-less ones. Significant correlations were detected between direct and indirect parameters and also between various environments. It was revealed that ABS/CS, TRo/CS, and RC/CS have significant positive correlation in greenhouse test and field experiment. Significant correlations suggest the possibility of applying the CF parameters in selection of barley DH lines resistant to F. culmorum infection.

First Korean case of a STAT1 gene mutation: chronic mucocutaneous candidiasis, hypothyroidism, chronic hepatitis and systemic lupus erythematosus

  • Kim, Kang-in;Lee, Hanbyul;Jung, So Yoon;Lee, Dong Hwan;Lee, Jeongho
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.92-96
    • /
    • 2018
  • Chronic mucocutaneous candidiasis (CMC) is characterized by increased susceptibility to chronic and recurrent infections of the skin, mucous membranes, and nails by Candida species. It is a primary immunodeficiency disorder that is difficult to diagnose because of its heterogeneous clinical manifestations and genetic background. A 20-month-old boy who did not grow in height for 3 months was diagnosed as having hypothyroidism and he had hepatitis which was found at 5 years old. He presented with persistent oral thrush and vesicles on the body, the cause of which could not be identified from laboratory findings. No microorganism was detected in the throat culture; however, the oral thrush persisted. Immunological tests showed that immunoglobulin (Ig) subclass IgG and cluster of differentiation (CD)3, CD4, and CD8 levels were within normal limits. We prescribed oral levothyroxine and fluconazole mouth rinse. The patient was examined using diagnostic exome sequencing at the age of 6 years, and a c.1162A>G (p.K388E) STAT1 gene mutation was identified. A diagnosis of CMC based on the STAT1 gene mutation was, thus, made. At the age of 8 years, the boy developed a malar-like rash on his face. We conducted tests for detection of antinuclear antibodies and anti-dsDNA antibodies, which showed positive results; therefore, systemic lupus erythematosus (SLE) was also suspected. Whole exome sequencing is important to diagnose rare diseases in children. A STAT1 gene mutation should be suspected in patients with chronic fungal infections with a thyroid disease and/or SLE.

Gold Nanoparticles Conjugation Enhances Antiacanthamoebic Properties of Nystatin, Fluconazole and Amphotericin B

  • Anwar, Ayaz;Siddiqui, Ruqaiyyah;Shah, Muhammad Raza;Khan, Naveed Ahmed
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.171-177
    • /
    • 2019
  • Parasitic infections have remained a significant burden on human and animal health. In part, this is due to lack of clinically-approved, novel antimicrobials and a lack of interest by the pharmaceutical industry. An alternative approach is to modify existing clinically-approved drugs for efficient delivery formulations to ensure minimum inhibitory concentration is achieved at the target site. Nanotechnology offers the potential to enhance the therapeutic efficacy of drugs through modification of nanoparticles with ligands. Amphotericin B, nystatin, and fluconazole are clinically available drugs in the treatment of amoebal and fungal infections. These drugs were conjugated with gold nanoparticles. To characterize these gold-conjugated drug, atomic force microscopy, ultraviolet-visible spectrophotometry and Fourier transform infrared spectroscopy were performed. These drugs and their gold nanoconjugates were examined for antimicrobial activity against the protist pathogen, Acanthamoeba castellanii of the T4 genotype. Moreover, host cell cytotoxicity assays were accomplished. Cytotoxicity of these drugs and drug-conjugated gold nanoparticles was also determined by lactate dehydrogenase assay. Gold nanoparticles conjugation resulted in enhanced bioactivity of all three drugs with amphotericin B producing the most significant effects against Acanthamoeba castellanii (p < 0.05). In contrast, bare gold nanoparticles did not exhibit antimicrobial potency. Furthermore, amoebae treated with drugs-conjugated gold nanoparticles showed reduced cytotoxicity against HeLa cells. In this report, we demonstrated the use of nanotechnology to modify existing clinically-approved drugs and enhance their efficacy against pathogenic amoebae. Given the lack of development of novel drugs, this is a viable approach in the treatment of neglected diseases.