Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.07.2018.0124

Chlorophyll a Fluorescence Parameters of Hulled and Hull-less Barley (Hordeum vulgare L.) DH Lines Inoculated with Fusarium culmorum  

Warzecha, Tomasz (University of Agriculture in Krakow, Department of Plant Breeding and Seed Science)
Skrzypek, Edyta (Polish Academy of Sciences, The Franciszek Gorski Institute of Plant Physiology)
Adamski, Tadeusz (Institute of Plant Genetics, Polish Academy of Sciences)
Surma, Maria (Institute of Plant Genetics, Polish Academy of Sciences)
Kaczmarek, Zygmunt (Institute of Plant Genetics, Polish Academy of Sciences)
Sutkowska, Agnieszka (University of Agriculture in Krakow, Department of Plant Breeding and Seed Science)
Publication Information
The Plant Pathology Journal / v.35, no.2, 2019 , pp. 112-124 More about this Journal
Abstract
Barley worldwide is affected seriously by Fusarium seedling blight (FSB) and Fusarium head blight (FHB) diseases caused by the Fusarium species. The objective of this study was to facilitate the resistance of hulled and hull-less barley at different growth stages to F. culmorum according to direct parameters: disease rating (DR), fresh weight of leaves and roots, kernel weight per spike, kernel number per spike, plump kernels, and indirect parameters - chlorophyll a fluorescence (CF). Plate assay, greenhouse and field tests were performed on 30 spring barley doubled haploid (DH) lines and their parents infected with Fusarium culmorum. Direct parameters proved that hulled genotypes show less symptoms. Most studied chlorophyll a fluorescence (CF) parameters (apart from DIo/CS - amount of energy dissipated from PSII for laboratory test, TRo/CS - amount of excitation energy trapped in PSII reaction centers, ETo/CS - amount of energy used for electron transport and RC/CS - number of active reaction centres in the state of fully reduced PSII reaction center in field experiment) were significantly affected by F. culmorum infection. In all experiments, hulled genotypes had higher values of CF parameters compared to hull-less ones. Significant correlations were detected between direct and indirect parameters and also between various environments. It was revealed that ABS/CS, TRo/CS, and RC/CS have significant positive correlation in greenhouse test and field experiment. Significant correlations suggest the possibility of applying the CF parameters in selection of barley DH lines resistant to F. culmorum infection.
Keywords
chlorophyll a fluorescence; fungal infection; Fusarium head blight; Fusarium seedling blight; spring barley;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Warzecha, T., Skrzypek, E. and Sutkowska, A. 2015. Effect of Fusarium culmorum infection on the selected physiological and biochemical parameters of barley (Hordeum vulgare L.) DH lines. Physiol. Mol. Plant Pathol. 89:62-69.   DOI
2 Wisniewska, H., Stępien, Ł., Waskiewicz, A., Beszterda, M., Goral, T. and Belter, J. 2014. Toxigenic Fusarium species infecting wheat heads in 2009 in selected regions of Poland. Central Eur. J. Biol. 9:163-172.
3 Wojciechowski, S., Chelkowski, J., Ponitka, A. and Slusarkiewicz-Jarzina, A. 1997. Evaluation of spring and winter wheat reaction to Fusarium culmorum and Fusarium avenaceum. J. Phytophatol. 145:99-103.
4 Yang, Z. P., Gilbert, J., Fedak, G. and Somers, D. J. 2005. Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48:187-196.   DOI
5 Zivcak, M., Brestic, M., Olsovska, K. and Slamka, P. 2008. Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ. 54:133-139.   DOI
6 Ma, H. X., Ge, H. J., Zhang, X., Lu, W. Z., Yu, D. Z., Chen, H. and Chen, J. M. 2009. Resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese barley. J. Phytopathol. 157:166-171.   DOI
7 Magan, N., Hope, R., Colleate, A. and Baxter, E. S. 2002. Relationship between growth and mycotoxin production by Fusarium species. biocides and environment. Eur. J. Plant Pathol. 108:685-690.   DOI
8 Mardi, M., Pazouki, L., Delavar, H., Kazemi, M. B., Ghareyazie, B., Steiner, B., Nolz, R., Lemmens, M. and Buerstmayr, H. 2006. QTL analysis of resistance to Fusarium head blight in wheat using a 'Frontana'- derived population. Plant Breed. 125:313-317.   DOI
9 Marin, S., Ramos, A. J., Cano-Sancho, G. and Sanchis, V. 2013. Mycotoxins: occurrence, toxicology. and exposure assessment. Food Chem. Toxicol. 60:218-237.   DOI
10 Maxwell, K. and Johnson, G. N. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51:659-668.   DOI
11 Mengiste, T. 2012. Plant immunity to necrotrophs. Annu. Rev. Phytopathol. 50:267-294.   DOI
12 Mesterhazy, A. 1995. Types and components of resistance to Fusarium head blight of wheat. Plant Breed. 114:377-386.   DOI
13 Mesterhazy, A. 2002. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. Eur. J. Plant Pathol. 108:675-684.   DOI
14 Mesterhazy, A., Bartok, T., Mirocha, C. G. and Komoroczy, R. 1999. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 118:97-110.   DOI
15 Miedaner, T. 1997. Breeding wheat and rye for resistance to Fusarium diseases. Plant Breed. 116:201-220.   DOI
16 Nielsen, L. K., Cook, D. J., Edwards, S. G. and Ray, R. V. 2014. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. Int. J. Food Microbiol. 179:38-49.   DOI
17 Adamski, T., Chelkowski, J., Golinski, P., Kaczmarek, Z., Kostecki M., Perkowski, J., Surma, M. and Wisniewska, H. 1999. Yield reduction and mycotoxin accumulation in barley doubled haploids inoculated with Fusarium culmorum (W.G.Sm.) Sacc. J. Appl. Genet. 40:73-84.
18 Miedaner, T., Reinbrecht, C., Lauber, U., Schollenberger, M. and Geiger, H. H. 2001. Effects of genotype and genotype x environment interaction on deoxynivalenol accumulation and resistance to Fusarium head blight in rye, triticale, and wheat. Plant Breed. 120:97-105.   DOI
19 Nielsen, L. K., Jensen, J. D., Nielson, G. C., Spliid, N. H., Thomsen, I. K., Justesen, A. F., Collinge, D. B. and Jorgensen, L. N. 2011. Fusarium head blight of cereals in Denmark: species complex and related mycotoxins. Phytopathology 101:960-969.   DOI
20 Nielsen, L. K., Justesen, A. F., Jensen, J. D. and Jorgensen, L. N. 2013. Microdochium nivale and Microdochium majus in seed samples of Danish small grain cereals. Crop Prot. 43:192-200.   DOI
21 O'Neill, P. M., Shanahan, J. F. and Schepers, J. S. 2006. Use of chlorophyll fluorescence assessments to differentiate corn hybrid response to variable water conditions. Crop Sci. 46:681-687.   DOI
22 Pereira, W. E., de Siqueira, D. L., Martinez, C. A. and Puiatti, M. 2000. Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J. Plant Physiol. 157:513-520.   DOI
23 Perfect, S. E. and Green, J. R. 2001. Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol. Plant Pathol. 2:101-108.   DOI
24 Pfannschmidt, T., Allen, J. F. and Oelmuller, R. 2001. Principles of redox control in photosynthesis gene expression. Physiol. Plant. 112:1-9.   DOI
25 Arseniuk, E., Foremska, E. and Goral, T. and Chelkowski, J. 1999. Fusarium head blight reactions and accumulation of deoxynivalenol (DON) and some of its derivatives in kernels of wheat. triticale and rye. J. Phytopathol. 147:577-590.   DOI
26 Ajigboye, O. O., Murchie, E. H. and Ray, R. V. 2014. Foliar application of isopyrazam and epoxiconazole improves photosystem II efficiency, biomass and yield in winter wheat. Pestic. Biochem. Physiol. 114:52-60.   DOI
27 Ajigboye, O. O., Bousquet L., Murchie E. H. and Ray R. V. 2016. Chlorophyll fluorescence parameters allow the rapid detection and differentiation of plant responses in three different wheat pathosystems. Funct. Plant Biol. 43:356-369.   DOI
28 Arseniuk, E., Goral, T. and Czembor, H. J. 1993. Reaction of triticale, wheat and rye accessions to graminaceous Fusarium spp. infection at the seedling and adult plant growth stages. Euphytica 70:175-183.   DOI
29 Baker, N. R. and Rosenqvist, E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 5:1607-1621.   DOI
30 Bauriegel, E., Giebel, A. and Herppich, W. B. 2010. Rapid Fusarium head blight detection on winter wheat ears using chlorophyll fluorescence imaging. J. Appl. Bot. Food Qual. 83:196-203.
31 Rapacz, M., Waligorski, P. and Janowiak, F. 2003. ABA and gibberellin- like substances during prehardening, cold acclimation, de- and reacclimation of oilseed rape. Acta Physiol. Plant. 25:151-161.   DOI
32 Pickering, R. A. and Devaux, P. 1992. Haploid production: Approaches and use in plant breeding. In: Barley: Genetics. Biochemistry, molecular biology and biotechnology, ed. by P. R. Shewry, pp. 519-547. CAB International, Wallingford, UK.
33 Pinto, L. S. R. C., Azevedo, J. L., Pereira, J. O., Vieira, M. L. C. and Labate, C. A. 2000. Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol. 147:609-615.   DOI
34 Rapacz, M. 1998. The after-effects of temperature and irradiance during early growth of winter oilseed rape (Brassica napus L. var. oleifera cv. Gorczanski) seedlings on the progress of their cold acclimation. Acta Physiol. Plant. 20:73-78.   DOI
35 Ren, R., Yang X. and Ray, R. V. 2015. Comparative aggressiveness of Microdochium nivale and M. majus and evaluation of screening methods for Fusarium seedling blight resistance in wheat cultivars. Eur. J. Plant Pathol. 141:281-294.   DOI
36 Rolfe, S. A. and Scholes, J. D. 2010. Chlorophyll fluorescence imaging of plant pathogen interactions. Protoplasma 247:163-175.   DOI
37 Schroeder, H. W. and Christiansen, J. J. 1963. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831-838.
38 Smillie, R. M. and Nott, R. 1982. Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo. Plant Physiol. 70:1049-1054.   DOI
39 Bottalico, A. and Perrone, G. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small - grain cereals in Europe. Eur. J. Plant Pathol. 108:611-624.   DOI
40 Bolhar-Nordenkampf, H. R. and Oquist, G. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. In: Photosynthesis and production in a changing environment: a field and laboratory manual, eds. by D. O. Hall, J. M. O. Scurlock, H. R. Bolhar-Nordenkampf, R. C. Leegood and S. P. Long, pp. 193-206. Springer, Dordrecht, The Netherlands.
41 Czyczylo-Mysza, I., Tyrka, M., Marcinska, I., Skrzypek, E., Karbarz, M., Dziurka, M., Hura, T., Dziurka, K. and Quarrie, S. A. 2013. Quantitative trait loci for leaf chlorophyll fluorescence parameters. chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol. Breed. 32:189-210.   DOI
42 Snijders, C. H. 2004. Resistance in wheat to Fusarium infection and trichothecene formation. Toxicol. Lett. 153:37-46.   DOI
43 Buerstmayr, H., Ban, T. and Anderson, J. A. 2009. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed. 128:1-26.   DOI
44 Chelkowski, J. and Manka, M. 1983. The ability of Fusaria pathogenic to wheat, barley and corn to produce zearalenone. J. Phytopathol. 106:354-359.   DOI
45 Chelkowski, J., Kaptur, P., Tomkowiak, M., Kostecki M., Golinski P., Ponitka, A., Slusarkiewicz-Jarzina, A. and Bocianowski, J. 2000. Moniliformin accumulation in kernels of triticale accessions inoculated with Fusarium avenaceum in Poland. J. Phytopathol. 148:433-449.   DOI
46 Cowger, C., Patton-Ozkurt, J., Brown-Guedira, G. and Perugini, L. 2009. Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology 99:320-327.   DOI
47 Wang, H., Hwang, S. F., Eudes, F., Chang, K. F., Howard, R. J. and Turnbull, G. D. 2006. Trichothecenes and aggressiveness of Fusarium graminearum causing seedling blight and root rot in cereals. Plant Pathol. 55:224-230.   DOI
48 Strasser, B. J. and Strasser, R. J. 1995. Measuring fast fluorescence transients to address environmental questions: the JIP-Test. In: Photosynthesis: from light to biosphere, ed. by P. Mathis, pp. 977-980. KAP Press, Dordrecht, The Netherlands.
49 Strasser, R. J. and Tsimilli-Michael, M. 1998. Activity and heterogeneity of PS II probed in vivo by the chlorophyll-a fluorescence rise O-(K)-J-I-P. In: Photosynthesis: mechanisms and effects, ed. by G. Garab, pp. 4321-4324. KAP Press, Dordrecht, The Netherlands.
50 Strasser, R. J., Srivastava, A. and Tsimilli-Michael, M. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Probing photosynthesis: mechanisms, regulation and adaptation, eds. by M. Yunus, U. Pathre and P. Mohanty, pp. 445-483. Taylor and Francis, London, UK.
51 Warzecha, T., Adamski, T., Kaczmarek, Z., Surma, M., Golinski, P., Perkowski, J., Chelkowski, J., Wisniewska, H., Krystkowiak, K. and Kuczynska, A. 2010. Susceptibility of hulled and hulless barley doubled haploids to Fusarium head blight. Cereal Res. Commun. 38:220-232.   DOI
52 Warzecha, T., Adamski, T., Kaczmarek Z., Surma, M., Chelkowski, J., Wisniewska, H., Krystkowiak, K. and Kuczynska, A. 2011. Genotype-by-Environment interaction of barley DH lines infected with Fusarium culmorum (W.G.Sm.) Sacc. Field Crops Res. 120:21-30.   DOI
53 Huner, N. P., Oquist, G., Hurry, V. M., Krol, M., Falk, S. and Griffith, M. 1993. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth. Res. 37:19-39.   DOI
54 Warzecha, T., Zielinski, A., Skrzypek, E., Wojtowicz, T. and Mos, M. 2012. Effect of mechanical damage on vigor. physiological parameters. and susceptibility of oat (Avena sativa) to Fusarium culmorum infection. Phytoparasitica 40:29-36.   DOI
55 Demetriou, G., Neonaki, C., Navakoudis, E. and Kotzabasis, K. 2007. Salt stress impact on the molecular structure and function of the photosynthetic apparatus: the protective role of polyamines. Biochim. Biophys. Acta 1767:272-280.   DOI
56 Desjardins, A. E. 2006. Fusarium mycotoxins. Chemistry, genetics. and biology. APS Press, St. Paul, MN, USA. 260 pp.
57 Foroud, N. A. and Eudes, F. 2009. Trichothecenes in cereal grains. Int. J. Mol. Sci. 10:147-173.   DOI
58 Fracheboud, Y. and Leipner, J. 2003. The application of chlorophyll fluorescence to study light, temperature and drought stress. In: Practical applications of chlorophyll fluorescence in plant biology, eds. by J. R. DeEll and P. M. A. Tiovonen, pp. 125-150. Springer, Boston, MA, USA.
59 Gorbe, E. and Calatayud, A. 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci. Hortic. 138:24-35.   DOI
60 Grey, W. and Mathre, D. E. 1988. Evaluation of spring barley for reaction to Fusarium seedling blight and root rot. Can. J. Plant Sci. 68:23-30.   DOI
61 Imathiu, S. M., Hare, M. C., Ray, R. V., Back, M. and Edwards, S. G. 2010. Evaluation of pathogenicity and aggressiveness of F. langsethiae on oat and wheat seedlings relative to known seedling blight pathogens. Eur. J. Plant Pathol. 126:203-216.   DOI
62 Inch, S. A. and Gilbert, J. 2003. Survival of Gibberella zeae in Fusarium-Damaged wheat kernels. Plant Dis. 83:282-287.   DOI
63 Kasha, K. J. and Kao, K. N. 1970. High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874-876.   DOI