• Title/Summary/Keyword: fungal disease

Search Result 656, Processing Time 0.031 seconds

Soil-Environmental Factors Involved in the Development of Root Rot/Vine on Cucurbits Caused by Monosporascus cannonballus

  • Kwon, Mi-Kyung;Hong, Jeong-Rae;Kim, Yong-Hwan;Kim, Ki-Chung
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • A root rot/vine decline disease occurred naturally on bottle gourd-stocked watermelon, melon, oriental melon and squash grown in greenhouses, but not on these plants grown in fields. Self-rooted watermelon, cucumber, pumpkin and luffa were also proven to be hosts of the pathogen by artificial inoculation in this experiment. The pathogen was identified as Monosporascus cannonballus by comparing microscopic characteristics of fungal structures with those of previously identified fungal strains. Our field investigations showed that the temperature and electric conductivity of soil in infected greenhouses were higher and the soil moisture content was lower than in noninfected greenhouses. To investigate soil-environmental factors affecting disease development, greenhouse trials and inoculation experiments were conducted. The host plants inoculated and grown under conditions of high soil temperature and electrical conductivity ($35\pm2^{\circ}$, 3.2-3.5 mS) and with low soil moisture content (pF 3.0-4.5) were most severely damaged by the fungal disease. Since plants growing in greenhouses ae usually exposed to such environmental conditions, this may be the reason why the monosporascus root rot/vine decline disease has occurred only on cucurbits cultivated in greenhouses but not in field conditions.

  • PDF

Unreported Post-harvest Disease of Apples Caused by Plenodomus collinsoniae in Korea

  • Das, Kallol;Kim, Yeong-Hwan;Yoo, Jingi;Ten, Leonid N.;Kang, Sang-Jae;Kang, In-Kyu;Lee, Seung-Yeol;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.511-518
    • /
    • 2020
  • This study was conducted to isolate and identify the fungal pathogen caused unreported post-harvest disease on apples (cv. Fuji) fruit in Korea. The disease symptoms on apples appeared as irregular, light to dark brown, slightly sunken spots. The three fungal strains were isolated from infected tissues of apple fruits and their cultural and morphological characteristics were completely consistent with those of Plenodomus collinsoniae. The phylogenetic analysis using the internal transcribed spacer (ITS) regions, beta-tubulin (TUB), and the second largest subunit of RNA polymerase II (RPB2) sequences revealed the closest relationship of the isolates with Plenodomus collinsoniae at the species level. The pathogenicity test showed the same dark brown spots on Fuji apple cultivar. Therefore, P. collinsoniae is a newly reported fungal agent causing post-harvest disease on apples in Korea.

Survey and Identification of Didymellaceae Causing Stem Canker Disease of Eucalyptus (E. camaldulensis) in Ethiopia

  • Admasu, Wendu;Sintayehu, Assefa;Gezahgne, Alemu
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.132-142
    • /
    • 2022
  • Plantation forests are established by planting Eucalyptus tree species to provide timber and pulp for the construction industries and to meet the energy needs in Ethiopia. Besides the extensive Eucalyptus plantations in the country, fungal pathogen-related diseases are the main challenges to successful production and management. The disease survey was conducted in the Eucalyptus growing areas of Ethiopia during 2019/2020 and 2020/2021. The objective of this research was to assess the diseases associated with Eucalyptus plant species and identify the causal fungal species. Plants of E. camaldulensis were the dominant species in the survey fields and were severely associated with stem and branch canker diseases. Diseased samples were collected and fungal species were identified as Didymellaceae according to culture morphology and affirmed by internal transcribed spacer sequence analysis. In phylogeny, isolates in the study and a reference strain formed supportive monophyletic clades with strong 90% and 95% support with Didymella coffeae-arabicae and Didymella pinodella respectively. Pathogenicity tests revealed that Didymellaceae could infect E. camaldulensis. The findings are the first reports of Eucalyptus stem canker disease caused by Didymellaceae in Ethiopia.

A case of Candida albicans-induced fungal keratitis in a Chihuahua dog - with a focus on optical coherence tomographic features

  • Heejong Cho;Manbok Jeong;Sukjong Yoo
    • Journal of Veterinary Science
    • /
    • v.24 no.2
    • /
    • pp.30.1-30.6
    • /
    • 2023
  • A 4-year-old Chihuahua dog was referred for bilateral corneal ulcers. Slightly raised white fluorescein-positive plaque-like corneal lesions in both eyes appeared as intense hyperreflective areas with posterior shadowing on optical coherence tomography (OCT). Based on corneal cytology and culture, Candida albicans-induced fungal keratitis was diagnosed. Despite treatment, on OCT, endothelial plaques, increased stromal infiltration thickness, vertical shapes of the ulcer edge, and necrotic stromal space were judged to be aggravation of the disease, and surgery was performed. Conjunctival grafting surgery with topical 1% voriconazole effectively resolved fungal keratitis. OCT can provide detailed and objective information related to the disease prognosis.

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

First Report of Lasiodiplodia theobromae Causing Gummosis on Citrus grandis (L.) Osbeck in Vietnam

  • Vo Thi Ngoc Trai;Tran Thi Thu Ha;Nguyen Bao Hung
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.78-81
    • /
    • 2024
  • This study aims to isolate and identify the fungal pathogen responsible for gummosis disease affecting Thanh Tra pomelo in Vietnam. Through molecular identification utilizing primer pairs ITS5 and ITS4, the analysis pinpointed Lasiodiplodia theobromae as the specific fungal pathogen. Notably, the fungal colonies exhibited vigorous growth on potato dextrose agar. Initially, these colonies appeared whitish-grey, transforming into a black-grey hue within 5-7 days at a temperature of 30℃. According to previous reports, Phytophthora spp. was the most common pathogenic genus causing gummosis on Thanh Tra pomelo in Vietnam. To our knowledge, this is the first report on L. theobromae causing gummosis on Thanh Tra pomelo in Vietnam.

The Major Postharvest Disease of Onion and Its Control with Thymol Fumigation During Low-Temperature Storage

  • Ji, Sang Hye;Kim, Tae Kwang;Keum, Young Soo;Chun, Se-Chul
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.242-253
    • /
    • 2018
  • Onion (Allium cepa L.) is one of the major vegetable crops in Korea that are damaged and lost by pathogenic fungal infection during storage due to a lack of proper storage conditions. The aim of this study was to determine an appropriate control measure using thymol to increase the shelf life of onions. To control fungal infections that occur during low-temperature storage, it is necessary to identify the predominant fungal pathogens that appear in low-temperature storage houses. Botrytis aclada was found to be the most predominant fungal pathogen during low-temperature storage. The antifungal activity of the plant essential oil thymol was tested and compared to that of the existing sulfur treatments. B. aclada growth was significantly inhibited up to 16 weeks with spray treatments using a thymol solution. To identify an appropriate method for treating onions in a low-temperature storage house, thymol was delivered by two fumigation treatment methods, either by heating it in the granule form or as a solution at low-temperature storage conditions (in vivo). We confirmed that the disease severity was reduced up to 96% by fumigating thymol solution compared to the untreated control. The efficacy of the fumigation of thymol solution was validated by testing onions in a low-temperature storage house in Muan, Jeollanam-do. Based on these results, the present study suggests that fumigation of the thymol solution as a natural preservative and fungicide can be used as an eco-friendly substitute for existing methods to control postharvest disease in long-term storage crops on a commercial scale.

Resistance of Fusarium fujikuroi Isolates to Hydrogen Peroxide and Its Application for Fungal Isolation

  • Youn, Kihoon;Choi, Hyo-Won;Shin, Dong Bum;Jung, Boknam;Lee, Jungkwan
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.227-230
    • /
    • 2015
  • The ascomycete fungus Fusarium fujikuroi causes bakanae disease in rice and this disease has been reemerging in Korea. Other fungal species including F. graminearum and Magnaporthe oryzae are often associated with F. fujikuroi, hampering pure isolation of F. fujikuroi from rice. In this study, we modified a selective medium for F. fujikuroi as supplementing both pentachloronitrobenzene and hydrogen peroxide into minimal medium. This medium efficiently suppressed the vegetative growth of F. graminearum and M. oryzae, but did not significantly reduce F. fujikuroi growth, providing an efficient tool for isolating F. fujikuroi.

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin

  • Lamsal, Kabir;Kim, Sang-Woo;Jung, Jin-Hee;Kim, Yun-Seok;Kim, Kyoung-Su;Lee, Youn-Su
    • Mycobiology
    • /
    • v.39 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Powdery mildew is one of the most devastating diseases in cucurbits. Crop yield can decline as the disease severity increases. In this study, we evaluated the effect of silver nanoparticles against powdery mildew under different cultivation conditions in vitro and in vivo. Silver nanoparticles (WA-CV-WA13B) at various concentrations were applied before and after disease outbreak in plants to determine antifungal activities. In the field tests, the application of 100 ppm silver nanoparticles showed the highest inhibition rate for both before and after the outbreak of disease on cucumbers and pumpkins. Also, the application of 100 ppm silver nanoparticles showed maximum inhibition for the growth of fungal hyphae and conidial germination in in vivo tests. Scanning electron microscope results indicated that the silver nanoparticles caused detrimental effects on both mycelial growth and conidial germination.