• 제목/요약/키워드: fungal biomass

검색결과 77건 처리시간 0.028초

전통적인 버섯재배지에서 사용되는 미강의 역할 (The Role of the Rice Bran Employed in the Traditional Spawn Sawdust Medium)

  • 이상선
    • 한국균학회지
    • /
    • 제19권1호
    • /
    • pp.47-53
    • /
    • 1991
  • 톱밥배지에서 생성되는 탄산까스를 정량하여 생리실험을 하였다. 14일 배양 기간에서, 탄산까스생산량을 균의 성장을 표시하는 균의 무게성장으로 간주하였으며, 이는 톱밥배지에서 균의 생리 parameter 측정에 응용하였다 일반적으로 종균 배양에 흔히 사용되는 미강의 역활로서, 미강은 전분, 질소영양분, 및 금속영양분으로 사용되고 있다. 특히, 생물학적으로 미강은 종균배양에서 빠른 속도의 성장으로 다른 미생물의 오염을 방지하는 역할을 하는 것으로 사려된다.

  • PDF

Bacteria and Fungi as Alternatives for Remediation of Water Resources Polluting Heavy Metals

  • Joo, Jin-Ho;Hussein, Khalid A.;Hassan, Sedky H.A.
    • 한국토양비료학회지
    • /
    • 제44권4호
    • /
    • pp.600-614
    • /
    • 2011
  • Classical methods which used for removal of heavy metals from contaminated water are adsorption, precipitation, coagulation, ion exchange resin, evaporation, and membrane processes. Microbial biosorption can be used for the removal of contaminated waters with pollutants such as heavy metals and dyes which are not easily biodegradable. Microbial biosorbents are inexpensive, eco friendly and more effective for the removal of toxic metals from aqueous solution. In this review, the bacterial and fungal abilities for heavy metals ions removal are emphasized. Environmental factors which affect biosorption process are also discussed. A detailed description for the most common isotherm and kinetic models are presented. This article reviews the achievements and the current status of bacterial and fungal biosorption technology for heavy metals removal and provides insights for further researches.

수생균의 분비물질에 의한 Chlorella fusca의 성장 및 대사조절 (Regulation of Growth and Metabolic Activities of Chlorella fusca by Release Products of Some Aquatic Fungi)

  • Hassan, S.K.M.;Fadl-Allah, E.M.;Kobbia, I.A.;Shoulkamy, M.A.
    • 한국균학회지
    • /
    • 제18권4호
    • /
    • pp.181-190
    • /
    • 1990
  • The growth and biochemical activities of Chlorella fusca were studied in the presence of different concentrations of either filtrates or mycelial mats of Saprolegnia ferax and Pythium graminicola. Low concentrations of both fungal filtrates exerted increase in total count, dry weight and in the biosynthesis of photosynthetic pigments, carbohydrates and nitrogen content. High concentrations showed inhibitory effect on both growth and biochemical activities of Chlorella fusca. Supplementation with different concentrations of dry mycelial mats of either fungi the culture of Chlorella showed elevation in biomass, dry weight, and biosynthesis of carbohydrates and nitrogen content especially at low concentrations. The contents of photosynthetic pigment were inhibited only at low concentrations. Neither the culture filtrate of Pythium nor Saprolegnia had cellulolytic activity, although polygalacturonase enzymes were detected, whereas chloroform-extract of both fungal filtrates showed blue spots under long wave light (366 nm).

  • PDF

고정상세포분리기의 개발 및 Cyclosporin A 생산을 위한 고정화 연속배양공정에의 적용

  • 이태호;박성관;장용근;전계택
    • 한국미생물·생명공학회지
    • /
    • 제24권6호
    • /
    • pp.717-725
    • /
    • 1996
  • We have developed an efficient immobilized cell separator for continuous operation of immobilized fungal cell cultures, and applied this separator to actual fermentation process for the production of cyclosporin A (CyA), a powerful immunosuppressant. In the experiments employing highly viscous polymer (carboxymethyl cellulose) solution, the decantor showed good separating performances at high solution viscosites and fast dilution rates. Air duct and cylindrical separator installed inside the decantor turned out to play key roles for the efficient separation of the immobilized cells. By installing the decantor in an immobilized perfusion reactor system (IPRS), continuous immobilized culture was stably carried out even at high dilution rate for a long period, leading to high productivities of free cells and CyA. Almost no immobilized biomass existed in effuluent stream of the IPRS, demonstrating the effectiveness of the decan- tor system for a long-term continuous fermentation. It was noteworthy that we could obtain these results despite of the unfavorable fermentation conditions, i.e., reduced density of the biosupports caused by overgrowth of cells inside the bead particles and existence of high density of suspended fungal cells (10g/l) in the fermentation broth.

  • PDF

Cellulose Utilization and Protein Productivity of Some Cellulolytic Fungal Co-cultures

  • Eyini, M.;Babitha, S.;Lee, Min-Woong
    • Mycobiology
    • /
    • 제30권3호
    • /
    • pp.166-169
    • /
    • 2002
  • Protein productivity by the cellulolytic fungi, Trichoderma viride(MTCC 800), Chaetomium globosum and Aspergillus terreus was compared in co-culture and mixed culture fermentations of cashewnut bran. Co-cultures were more effective in substrate saccharification, which ranged between $85{\sim}88%$ compared to the $62{\sim}67%$ saccharification shown by the monocultures. Maximum saccharification was induced by T. viride and C. globosum co-culture resulting in the highest 34% release of reducing sugars. The maximum 16.4% biomass protein and the highest protein productivity(0.58%) were shown by T. viride and A. terreus co-culture. A. terreus performed better in co-culture in the presence of T. viride rather than with C. globosum. Among the cellulolytic enzymes, FPase(Filter Paper Cellulase) activity was significantly higher in all the co-cultures and in the mixed culture than in their respective monocultures. Mixed culture fermentation involving all the three fungi was not effective in increasing the per cent saccharification or the biomass protein content over the co-cultures.

Cyclosporin A 생산을 위한 액체배양과 고정화배양의 생물반응기에서의 산소전달 비교 연구 (Comparative Bioreactor Studies in Terms of Oxygen Transfer between Suspended and Immobilized Fungal Systems for Cyclosporin A Fermentation)

  • 전계택
    • KSBB Journal
    • /
    • 제9권2호
    • /
    • pp.211-223
    • /
    • 1994
  • 4l 교반식 생물반응기에서, celite담체에 고정화된 Tolypocladium inflatum 균주 배양시의 산소전달 계수($k_La$)가 같은 세포농도 하에서 액상배양시의 값과 비교할 때, 고정상균주의 높은 비산소흡수율에도 불구하고, 2배 이상 증가되었다. 그 결과 고정상배 양의 경우, 용존산소량이 포화상태의 75%를 초과하는 충분한 산소량이 배양기간 내내 유지될 수 있었으나, 액상배양의 경우에는 용존산소량이 포화상태의 50% 이하까지 감소되었다. 임펠러의 교반속도에 따른 $k_La$의 단순 선형 의존 현상이, 250rpm에서 550rpm 범위에서 고정상배양 및 액상배양 모두에서 관찰되었으며, 그 의존정도는 액상배양의 경우 세포 농도와 함수관계인 반면, 고정상배양의 경우에는 세포농도와 무관하였다. 반면에 두 배양시스템 모두에서, 통기율 변화에 따른 산소전달율은 2.5vvm까지는 함수관계를 보였으나 그 의존도는 임펠러 교반속도의 변화에 따른 영향과 비교할 때 훨씬 미미하였으며, 2.5vvm 이상의 통기율에서는 산소전달현상에 별로 영향을 주지 못했다. CyA 생산 면에서 볼 때, 고정상세포는 형태학 또는 생리학적으로 훌륭한 배양상태를 유지할 수 있어서, 동일조건의 액상배양과 비교해서 약 2배 이상 생산성이 증가되였다. 그러므로 교반식 생물반응기를 이용한 celite-고정상배양법 은 고농도배양이 가능하다는 측면에서 볼 때, CyA 대량생산 산업화를 위한 대체 공정으로서 훌륭한 전망을 제시해 준다.

  • PDF

Effects of Dissolved Oxygen on Fungal Morphology and Process Rheology During Fed-Batch Processing of Ganoderma lucidum

  • Fazenda, Mariana L.;Harvey, Linda M.;McNeil, Brian
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권4호
    • /
    • pp.844-851
    • /
    • 2010
  • Controlling the dissolved oxygen (DO) in the fed-batch culture of the medicinal mushroom Ganoderma lucidum led to a 2-fold increase of the maximum biomass productivity compared with uncontrolled DO conditions. By contrast, extracellular polysaccharide (EPS) production was two times higher under oxygen limitation (uncontrolled DO) than under increased oxygen availability (controlled DO). Morphologically, dispersed mycelium was predominant under controlled DO conditions, with highly branched hyphae, consistent with the enhanced culture growth noted under these conditions, whereas in the uncontrolled DO process mycelial clumps were the most common morphology throughout the culture. However, in both cultures, clamp connections were found. This is an exciting new finding, which widens the applicability of this basidiomycete in submerged fermentation. In rheological terms, broths demonstrated shear-thinning behavior with a yield stress under both DO conditions. The flow curves were best described by the Herschel-Bulkley model: flow index down to 0.6 and consistency coefficient up to 0.2 and 0.6 Pa $s^n$ in uncontrolled and controlled cultures DO, respectively. The pseudoplastic behavior was entirely due to the fungal biomass, and not to the presence of EPS (rheological analysis of the filtered broth showed Newtonian behavior). It is clear from this study that dissolved oxygen tension is a critical process parameter that distinctly influences G. lucidum morphology and rheology, affecting the overall performance of the process. This study contributes to an improved understanding of the process physiology of submerged fermentation of G. lucidum.

Fungal Production of Single Cell Oil Using Untreated Copra Cake and Evaluation of Its Fuel Properties for Biodiesel

  • Khot, Mahesh;Gupta, Rohini;Barve, Kadambari;Zinjarde, Smita;Govindwar, Sanjay;RaviKumar, Ameeta
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.459-463
    • /
    • 2015
  • This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.

Itaconic and Fumaric Acid Production from Biomass Hydrolysates by Aspergillus Strains

  • Jimenez-Quero, A.;Pollet, E.;Zhao, M.;Marchioni, E.;Averous, L.;Phalip, V.
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권9호
    • /
    • pp.1557-1565
    • /
    • 2016
  • Itaconic acid (IA) is a dicarboxylic acid included in the US Department of Energy's (DOE) 2004 list of the most promising chemical platforms derived from sugars. IA is produced industrially using liquid-state fermentation (LSF) by Aspergillus terreus with glucose as the carbon source. To utilize IA production in renewable resource-based biorefinery, the present study investigated the use of lignocellulosic biomass as a carbon source for LSF. We also investigated the production of fumaric acid (FA), which is also on the DOE's list. FA is a primary metabolite, whereas IA is a secondary metabolite and requires the enzyme cis-aconitate decarboxylase for its production. Two lignocellulosic biomasses (wheat bran and corn cobs) were tested for fungal fermentation. Liquid hydrolysates obtained after acid or enzymatic treatment were used in LSF. We show that each treatment resulted in different concentrations of sugars, metals, or inhibitors. Furthermore, different acid yields (IA and FA) were obtained depending on which of the four Aspergillus strains tested were employed. The maximum FA yield was obtained when A. terreus was used for LSF of corn cob hydrolysate (1.9% total glucose); whereas an IA yield of 0.14% was obtained by LSF of corn cob hydrolysates by A. oryzae.

Enhanced Production of Exopolysaccharides by Fed-batch Culture of Ganoderma resinaceum DG-6556

  • Kim Hyun-Mi;Paik Soon-Young;Ra Kyung-Soo;Koo Kwang-Bon;Yun Jong-Won;Choi Jang-Won
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.233-242
    • /
    • 2006
  • The objectives of this study were to optimize submerged culture conditions of a new fungal isolate, Ganorderma resinaceum, and to enhance the production of bioactive mycelial biomass and exopolysaccharides (EPS) by fed-batch culture. The maximum mycelial growth and EPS production in batch culture were achieved in a medium containing 10 g/l glucose, 8 g/l soy peptone, and 5 mM $MnCl_2$ at an initial pH 6.0 and temperature $31^{\circ}C$. After optimization of culture medium and environmental conditions in batch cultures, a fed-batch culture strategy was employed to enhance production of mycelial biomass and EPS. Five different EPS with molecular weights ranging from 53,000 to 5,257,000 g/mole were obtained from either top or bottom fractions of ethanol precipitate of culture filtrate. A fed-batch culture of G. resinaceum led to enhanced production of both mycelial biomass and EPS. The maximum concentrations of mycelial biomass (42.2 g/l) and EPS (4.6 g/l) were obtained when 50 g/l of glucose was fed at day 6 into an initial 10 g/l of glucose medium. It may be worth attempting with other mushroom fermentation processes for enhanced production of mushroom polysaccharides, particularly those with industrial potential.