Browse > Article
http://dx.doi.org/10.4014/jmb.1603.03073

Itaconic and Fumaric Acid Production from Biomass Hydrolysates by Aspergillus Strains  

Jimenez-Quero, A. (BioTeam/ICPEES-ESBS, UMR CNRS 7515, Universite de Strasbourg)
Pollet, E. (BioTeam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg)
Zhao, M. (CAMBA/IPHC, UMR 7178, Faculte de Pharmacie, Universite de Strasbourg)
Marchioni, E. (CAMBA/IPHC, UMR 7178, Faculte de Pharmacie, Universite de Strasbourg)
Averous, L. (BioTeam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg)
Phalip, V. (BioTeam/ICPEES-ESBS, UMR CNRS 7515, Universite de Strasbourg)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.9, 2016 , pp. 1557-1565 More about this Journal
Abstract
Itaconic acid (IA) is a dicarboxylic acid included in the US Department of Energy's (DOE) 2004 list of the most promising chemical platforms derived from sugars. IA is produced industrially using liquid-state fermentation (LSF) by Aspergillus terreus with glucose as the carbon source. To utilize IA production in renewable resource-based biorefinery, the present study investigated the use of lignocellulosic biomass as a carbon source for LSF. We also investigated the production of fumaric acid (FA), which is also on the DOE's list. FA is a primary metabolite, whereas IA is a secondary metabolite and requires the enzyme cis-aconitate decarboxylase for its production. Two lignocellulosic biomasses (wheat bran and corn cobs) were tested for fungal fermentation. Liquid hydrolysates obtained after acid or enzymatic treatment were used in LSF. We show that each treatment resulted in different concentrations of sugars, metals, or inhibitors. Furthermore, different acid yields (IA and FA) were obtained depending on which of the four Aspergillus strains tested were employed. The maximum FA yield was obtained when A. terreus was used for LSF of corn cob hydrolysate (1.9% total glucose); whereas an IA yield of 0.14% was obtained by LSF of corn cob hydrolysates by A. oryzae.
Keywords
Lignocellulosic biomass; liquid-state fermentation; itaconic; fumaric; biomass valorization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zha Y, Westerhuis JA, Muilwijk B, Overkamp KM, Nijmeijer BM, Coulier L, et al. 2014. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnol. 14: 22.   DOI
2 Begum MF, Alimon AR. 2011. Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production. Electron. J. Biotechnol. 14: 5.   DOI
3 Bozell JJ, Petersen GR. 2010. Technology development for the production of biobased products from biorefinery carbohydrates — the US Department of Energy's 'Top 10' revisited. Green Chem. 12: 539.   DOI
4 Dashtban M, Schraft H, Qin W. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5: 578-595.   DOI
5 de Castro RJS, Sato HH. 2014. Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical–chemical parameters using agroindustrial wastes as supports. Biocatal. Agric. Biotechnol. 3: 20-25.
6 Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M. 2002. Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J. Biosci. Bioeng. 94: 29-33.   DOI
7 Goldberg I, Rokem JS, Pines O. 2006. Organic acids: old metabolites, new themes. J. Chem. Technol. Biotechnol. 81: 1601-1611.   DOI
8 Gyamerah MH. 1995. Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl. Microbiol. Biotechnol. 44: 20-26.   DOI
9 Gyamerah M. 1995. Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Appl. Microbiol. Biotechnol. 44: 356-361.   DOI
10 Kamm B. 2007. Production of platform chemicals and synthesis gas from biomass. Angew. Chem. Int. Ed. 46: 5056-5058.   DOI
11 Hendriks ATWM, Zeeman G. 2008. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10-18.   DOI
12 Hevekerl A, Kuenz A, Vorlop K-D. 2014. Filamentous fungi in microtiter plates - an easy way to optimize itaconic acid production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 98: 6983-6989.   DOI
13 Jönsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6: 16.   DOI
14 Kanamasa S, Dwiarti L, Okabe M, Park EY. 2008. Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl. Microbiol. Biotechnol. 80: 223-229.   DOI
15 Karaffa L, Díaz R, Papp B, Fekete E, Sándor E, Kubicek CP. 2015. A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Appl. Microbiol. Biotechnol. 99: 7937-7944.   DOI
16 Klement T, Büchs J. 2013. Itaconic acid – a biotechnological process in change. Bioresour. Technol. 135: 422-431.   DOI
17 Kuenz A, Gallenmüller Y, Willke T, Vorlop K-D. 2012. Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl. Microbiol. Biotechnol. 96: 1209-1216.   DOI
18 Kumar P, Barrett DM, Delwiche MJ, Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48: 3713-3729.   DOI
19 Lucia LA, Argyropoulos DS, Adamopoulos L, Gaspar AR. 2006. Chemicals and energy from biomass. Can. J. Chem. 84: 960-970.   DOI
20 Le Digabel F, Avérous L. 2006. Effects of lignin content on the properties of lignocellulose-based biocomposites. Carbohydr. Polym. 66: 537-545.   DOI
21 Lenihan P, Orozco A, O'Neill E, Ahmad MNM, Rooney DW, Walker GM. 2010. Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 156: 395-403.   DOI
22 Liaud N, Giniés C, Navarro D, Fabre N, Crapart S, Herpoël-Gimbert I. 2014. Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol. Biotechnol. 1: 1.   DOI
23 Lutz J-F, Börner HG. 2008. Modern trends in polymer bioconjugates design. Prog. Polym. Sci. 33: 1-39.   DOI
24 Magnuson JK, Lasure LL. 2004. Organic acid production by filamentous fungi, pp. 307-340. In Tkacz JS, Lange L (eds.). Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Kluwer Academic, NY.
25 Menon V, Rao M. 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38: 522-550.   DOI
26 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
27 Mondala AH. 2015. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J. Ind. Microbiol. Biotechnol. 42: 487-506.   DOI
28 Okuda J, Miwa I, Maeda K, Tokui K. 1977. Rapid and sensitive, colorimetric determination of the anomers of ᴅ-glucose with ᴅ-glucose oxidase, peroxidase, and mutarotase. Carbohydr. Res. 58: 267-270.   DOI
29 Phalip V, Debeire P, Jeltsch J-M. 2012. Bioethanol, pp. 223-238. In Pinheiro Lima MA (ed.). InTech Europe.
30 Schmidt CG, Gonçalves LM, Prietto L, Hackbart HS, Furlong EB. 2014. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae. Food Chem. 146: 371-377.   DOI
31 Riscaldati E, Moresi M, Federici F, Petruccioli M. 2000. Effect of pH and stirring rate on itaconate production by Aspergillus terreus. J. Biotechnol. 83: 219-230.   DOI
32 Sandhya C, Sumantha A, Szakacs G, Pandey A. 2005. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40: 2689-2694.   DOI
33 van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, et al. 2014. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb. Cell Factories 13: 1.   DOI
34 Veličković SJ, Dzunuzovic ES, Griffiths PC, Lacik I, Filipovic J, Popovis IG. 2008. Polymerization of itaconic acid initiated by a potassium persulfate/N,N-dimethylethanolamine system. J. Appl. Polym. Sci. 110: 3275-3282.   DOI
35 Werpy T, Holladay J, White J. 2004. Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. DOE Scientific and Technical Information.
36 Xu Q, Li S, Fu Y, Tai C, Huang H. 2010. Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresour. Technol. 101: 6262-6264.   DOI
37 Xu Q, Li S, Huang H, Wen J. 2012. Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol. Adv. 30: 1685-1696.   DOI