• 제목/요약/키워드: fungal

검색결과 3,117건 처리시간 0.036초

Development of a Fungal Spore Aerosol Generator: Test with Cladosporium cladosporioides and Penicillium citrinum

  • Lee, Byung-Uk;Kim, Young-Joong;Lee, Chang-Ho;Yun, Sun-Hwa;Bae, Gwi-Nam;Ji, Jun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.795-798
    • /
    • 2008
  • As the first step to develop efficient means to control fungal spore bioaerosols, we designed, manufactured, and evaluated a fungal spore aerosol generator. We studied the physical and biological properties of the fungal spore bioaerosols on two common fungal species. The results demonstrated that the fungal spore bioaerosol generator effectively produces fungal spore bioaerosols.

Evaluation of White-rot Fungi for Biopulping of Wood

  • Kang, Kyu-Young;Sung, Jung-Suk;Kim, Dae-Young
    • Mycobiology
    • /
    • 제35권4호
    • /
    • pp.205-209
    • /
    • 2007
  • Ergosterol involves in fungal cell growth as a major component in fungal cell membranes. It can be an indicator that shows the fungal activity, and its content depends on the fungal strains, culture, growth conditions and so on. In this study, fungal activities and growth patterns of three white-rot fungi strains isolated in Korea were evaluated by determination of ergosterol contents during the incubation. Wood decay test and chemical analyses of wood were also performed to verify the relationship between fungal activity and wood degrading capacity of white-rot fungi for 60 days. In the results of experiments, it is considered that the test strains selectively degrade large amount of lignin in wood at the early stage of decay. Especially, Phanerochaete chrysosporium showed the best capability on selective degradation of lignin among the test fungi. It is suggested that the determination of ergosterol content in the fungal culture during the incubation is the simple and effective screening method of white-rot fungi for the application to biopulping of wood.

Fungal biopriming increases the resistance of wheat to abiotic stress

  • El-Sayed, Ashraf S.A.;Dief, Hanan E.;Hashem, ElSayed A.;Desouky, Ahmed M.;Shah, Zamarud;Fawzan, Salwa
    • Journal of Plant Biotechnology
    • /
    • 제49권2호
    • /
    • pp.107-117
    • /
    • 2022
  • Increasing soil salinity is one of the global challenges that the agriculture sector in Egypt has been facing; 33% of the cultivated land in Egypt, which includes merely 3% of the entire land area, is already salinized. The present review sheds light on the role of fungal biopriming, a technique in which hydrated seeds are inoculated with beneficial fungal flora, in mitigating the deleterious influence of NaCl tension. Endophytic fungi were recognized to be able to interact with several plant species, markedly contributing to the mitigation of NaCl stress in these plants, such that some plants get impoverished to their absent associated microbes under stressful conditions.

Fungal Genomics in Dermatology

  • Lee, Young Bok;Lee, Soo Young;Seo, Ji Min;Kang, Min Ji;Yu, Dong Soo
    • Journal of Mycology and Infection
    • /
    • 제24권2호
    • /
    • pp.37-44
    • /
    • 2019
  • To date, hundreds of fungal genomes have been sequenced, and many more are underway. Recently developed cutting-edge techniques generate very large amounts of data, and the field of fungal genomics in dermatology has consequently evolved substantially. Methodological improvements have broadened the scope of large-scale ecological studies in dermatology, including biodiversity assessments and genomic identification of fungi. Here, we aimed to provide a brief introduction to bioinformatic approaches to fungal genomics in the field of dermatology. We described the history and basic concepts of fungal genomics and presented sequencing-based techniques for fungal identification, including a list of the revised taxa of dermatophytes, as determined by current phylogenetic analysis. Finally, we discussed the emerging trends in fungal genomics in dermatology, such as next-generation sequencing.

Delineating Transcription Factor Networks Governing Virulence of a Global Human Meningitis Fungal Pathogen, Cryptococcus neoformans

  • Jung, Kwang-Woo;Yang, Dong-Hoon;Maeng, Shinae;Lee, Kyung-Tae;So, Yee-Seul;Hong, Joohyeon;Choi, Jaeyoung;Byun, Hyo-Jeong;Kim, Hyelim;Bang, Soohyun;Song, Min-Hee;Lee, Jang-Won;Kim, Min Su;Kim, Seo-Young;Ji, Je-Hyun;Park, Goun;Kwon, Hyojeong;Cha, Sooyeon;Meyers, Gena Lee;Wang, Li Li;Jang, Jooyoung;Janbon, Guilhem;Adedoyin, Gloria;Kim, Taeyup;Averette, Anna K.;Heitman, Joseph;Cheong, Eunji;Lee, Yong-Hwan;Lee, Yin-Won;Bahn, Yong-Sun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.59-59
    • /
    • 2015
  • Cryptococcus neoformans causes life-threatening meningoencephalitis in humans, but the treatment of cryptococcosis remains challenging. To develop novel therapeutic targets and approaches, signaling cascades controlling pathogenicity of C. neoformans have been extensively studied but the underlying biological regulatory circuits remain elusive, particularly due to the presence of an evolutionarily divergent set of transcription factors (TFs) in this basidiomycetous fungus. In this study, we constructed a high-quality of 322 signature-tagged gene deletion strains for 155 putative TF genes, which were previously predicted using the DNA-binding domain TF database (http://www.transcriptionfactor.org/). We tested in vivo and in vitro phenotypic traits under 32 distinct growth conditions using 322 TF gene deletion strains. At least one phenotypic trait was exhibited by 145 out of 155 TF mutants (93%) and approximately 85% of the TFs (132/155) have been functionally characterized for the first time in this study. Through high-coverage phenome analysis, we discovered myriad novel TFs that play critical roles in growth, differentiation, virulence-factor (melanin, capsule, and urease) formation, stress responses, antifungal drug resistance, and virulence. Large-scale virulence and infectivity assays in insect (Galleria mellonella) and mouse host models identified 34 novel TFs that are critical for pathogenicity. The genotypic and phenotypic data for each TF are available in the C. neoformans TF phenome database (http://tf.cryptococcus.org). In conclusion, our phenome-based functional analysis of the C. neoformans TF mutant library provides key insights into transcriptional networks of basidiomycetous fungi and ubiquitous human fungal pathogens.

  • PDF

Host-Induced gene silencing of fungal pathogenic genes confer resistance to fungal pathogen, Magnaporthe Oryzae in rice

  • Jin, Byung Jun;Chun, Hyun Jin;Kim, Min Chul
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.134-134
    • /
    • 2017
  • Recently, host-induced gene silencing (HIGS) system has been successfully applied into development of resistant crops against insects, fungal and viral pathogens. To test HIGS-mediated resistance in rice against rice blast fungus, Magnaporthe oryzae, we first tested possibility of movement of small non-coding RNA from rice cells to rice blast fungus. The rice blast fungus expressing GFP transgene were inoculated to transgenic rice plants ectopically expressing dsRNAi construct targeting fungal GFP gene. Expression of dsRNAi construct for GFP gene in transgenic plants significantly suppressed GFP expression in infected fungal cells indicating that small RNAs generated in plant cells can move into infected fungal cells and efficiently suppress the expression of fungal GFP gene. Consistent with these results, expression of dsRNAi constructs against 3 fungal pathogenic genes of M. oryzae in transgenic rice specifically and efficiently suppressed not only the expression of fungal pathogenic genes, but also fungal infection. The conidia of M. oryzae applied on leaf sheath of transgenic rice expressing dsRNAs against 3 fungal pathogenic genes showed abnormal development of primary hyphae and malfunction of appressorium, which is consistent with the phenotypes of corresponding fungal knock-out mutants. Taken these results together, here, we suggest a novel strategy for development of antifungal crops by means of HIGS system.

  • PDF

Diversity of Fungi in Soils with Different Degrees of Degradation in Germany and Panama

  • Rosas-Medina, Miguel;Macia-Vicente, Jose G.;Piepenbring, Meike
    • Mycobiology
    • /
    • 제48권1호
    • /
    • pp.20-28
    • /
    • 2020
  • Soil degradation can have an impact on the soil microbiota, but its specific effects on soil fungal communities are poorly understood. In this work, we studied the impact of soil degradation on the richness and diversity of communities of soil fungi, including three different degrees of degradation in Germany and Panama. Soil fungi were isolated monthly using the soil-sprinkling method for 8 months in Germany and 3 months in Panama, and characterized by morphological and molecular data. Soil physico-chemical properties were measured and correlated with the observed values of fungal diversity. We isolated a total of 71 fungal species, 47 from Germany, and 32 from Panama. Soil properties were not associated with fungal richness, diversity, or composition in soils, with the exception of soil compaction in Germany. The geographic location was a strong determinant of the soil fungal species composition although in both countries there was dominance by members of the orders Eurotiales and Hypocreales. In conclusion, the results of this work do not show any evident influence of soil degradation on communities of soil fungi in Germany or Panama.

동물병원성 뇌수막염 유발 곰팡이 Cryptococcus neoformans의 Pathogenomic Signaling Network 연구와 항곰팡이제 개발 (Pathogenomic Signaling Networks and Antifungal Drug Development for Human Fungal Pathogen Cryptococcus neoformans)

  • 고영준;권유원;나한나;반용선
    • 한국미생물·생명공학회지
    • /
    • 제38권1호
    • /
    • pp.13-18
    • /
    • 2010
  • Past decade systemic mycoses caused by opportunistic human fungal pathogens, including Candida, Aspergillus, and Cryptococcus, have been a growing problem for both immunocompromised and immunocompetent individuals. Particularly, Cryptococcus neoformans has recently emerged as a major fungal pathogen, which can cause fungal pneumonia and meningitis that are lethal if not timely medicated. However, treatment for cryptococcosis has been difficult due to a lack of proper anti-cryptococcal drugs with fungicidal activity and less toxicity. In this review we introduced novel therapeutic methods for treating cryptococcosis by exploring pathogenomic signa1ing networks of C. neoformans with genome-wide transcriptome approaches as well as diverse molecular/genetic tools.

Investigation of the Fungal Diversity of the Federated States of Micronesia and the Construction of an Updated Fungal Inventory

  • Park, Myung Soo;Yoo, Shinnam;Cho, Yoonhee;Park, Ki Hyeong;Kim, Nam Kyu;Lee, Hyi-Seung;Lim, Young Woon
    • Mycobiology
    • /
    • 제49권6호
    • /
    • pp.551-558
    • /
    • 2021
  • The Federated States of Micronesia (FSM) is an island country in the western Pacific and is a known biodiversity hotspot. However, a relatively small number of fungi (236 species) have been reported till July 2021. Since fungi play major ecological roles in ecosystems, we investigated the fungal diversity of FSM from various sources over 2016 and 2017 and constructed a local fungal inventory, which also included the previously reported species. Fruiting bodies were collected from various host trees and fungal strains were isolated from marine and terrestrial environments. A total of 99 species, of which 78 were newly reported in the FSM, were identified at the species level using a combination of molecular and morphological approaches. Many fungal species were specific to the environment, host, or source. Upon construction of the fungal inventory, 314 species were confirmed to reside in the FSM. This inventory will serve as an important basis for monitoring fungal diversity and identifying novel biological resources in FSM.

항진균성 활성물질을 생성하는 토양방선균의 분리 (Isolation and Selection of Actinomycetes Producing Anti-fungal Materials)

  • 권혁구;강병곤;이장훈
    • Environmental Analysis Health and Toxicology
    • /
    • 제18권2호
    • /
    • pp.131-136
    • /
    • 2003
  • Anti-fungal materials producing bacteria were isolated from soil by bennett's agar and actinomycete isola-tion agar medium. The bacterla were identified as synonym of Actinomycetes. Based on the data obtained from its morphological and colony characteristics. The medium for production of anti-fungal materials was YEME (yeast extract 4 g, malt extract l0g, glucose 4 g, D.W 1ι, pH 7.0${\pm}$0.2). The culture conditions were 30$^{\circ}C$, 7 days and 200 rpm in shaking incubator. No. 13, No. 15 and No.28 strains were produced anti-fungal materials against fungal plant pathogens. Specially, The No. 28 strain showed a powerful biopesticide activity and broad spectrum effects of anti -fungal materials on Collectrichum coccodes, Botrytis cinerea, Cladosporium cucumerinum, Didymella bryoniae.