
Abstract Increasing soil salinity is one of the global 

challenges that the agriculture sector in Egypt has been 

facing; 33% of the cultivated land in Egypt, which includes 

merely 3% of the entire land area, is already salinized. The 

present review sheds light on the role of fungal biopriming, 

a technique in which hydrated seeds are inoculated with 

beneficial fungal flora, in mitigating the deleterious 

influence of NaCl tension. Endophytic fungi were recognized 

to be able to interact with several plant species, markedly 

contributing to the mitigation of NaCl stress in these plants, 

such that some plants get impoverished to their absent 

associated microbes under stressful conditions.

Keywords Fungal biopriming, Abiotic stress, Wheat salt 

stress

Introduction

Seed priming approaches were initially nominating for 

alleviating the plant environmental stresses. Several app-

roaches of priming were reported such as hydropriming, 

osmopriming, hormopriming, thermopriming, nutripriming, 

chemical priming and biopriming (Heydecker et al. 1973; 

Lutts et al. 2016). Compiling the process of seeds hydration 

and microbial inoculation using beneficial microbes has 

been nominated as biological priming “biopriming”. It 

plays vital roles in increasing seed viability, germination 

so, enhancing the growth of plant and also, decrease other 

stresses on the plant (Afzal et al. 2016; Lutts et al. 2016). 

The fungal endophytes are able to interplay with plants 

and significantly participate in their tolerance to different 

forms of both stresses (biotic and abiotic) such as salinity, 

heat, drought, plant pathogens, herbivores, shortage of 

elements of nutrition to great limit that some plants get 

impoverished to their absent associated microbes under 

stressful conditions (de Zelicourt et al. 2013; El-Sayed et 

al. 2019). Stress control by phytosymbiotic are mainly 

occurred by stimulation of systems responsible for stress 

in the host cell, and anti-stress compounds produced by 

endophytes. These phytohormones could promotes the root 

hairs growth by increasing the total area of root, ease the 

nutrients uptake, inducing the activity of 1-aminocyclo-

propane-1-carboxylate deaminasee (Lata et al. 2018; Milošević 

et al. 2012; Prasad et al. 2016; Singh et al. 2011; Vardharajula 

et al. 2017). 

Salt Stress

Agriculture is the prime activity for the Egyptian population, 

however, degradation of soils through salinity was the major 

agricultural problem. Soils in the Nile Delta are affected 

by different types of salts comes from three distinct sources 

named logging, water irrigation, and the interruption of 

saline water. Salinity can affect the uptake of nutrients and 

water absorption as well as the permeability of cell 

membranes, and this appears clearly by the balance water 

and nutrients, and mutually effect the metabolic process in 

the plant, hormones production, exchange of gases, and the 

accumulation of reactive oxygen species (ROS) (Gheyi et 

al. 2016). Visual signs of salt harm in plant growth seem 

progressive: wilting, leaves yellowing and abnormal 

growth, followed by losing of green colour and appearance 

pf chlorotic lesion on the green parts, burning of the upper 

parts of leaves, and necrotic lesions on the leaves, then 

finally, the oldest leaves takes the scorched appearance 
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(Machado and Serralheiro 2017). Salinity decreases the 

plant growth because owing to salinity the plant may face 

four types of stresses firstly, water stress induced by 

osmosis. Secondly, the ion toxicity stress because of the 

high ions concentrations as sodium and chloride. Thirdly, 

the imbalance ions nutrients, because higher levels of 

sodium and chloride can decrease the uptake of other ions 

as K+, NO-, PO4

3-. Fourthly, the stress caused by high 

production of ROS which causes macromolecules damage.

Soil salinity diminishes the net photosynthetic process 

by decreasing the stomatal conductance, CO2 pressure in 

leaves, and cell content of chlorophyll, altering the 

structure of chloroplasts, decreasing the photo dependent 

chemical reactions, and increasing the tissues content of 

soluble sugars (Iqbal et al. 2014). Osmoregulants (proline, 

protein, mannitol, sorbitol, glycine and betaine) build up 

in salt stressed plants to reduce the osmotic potential, 

thereby maintaining cell turgidity that provides in turn the 

driving gradients for uptake of water (Rasool et al. 2013). 

The main cations associated with salinity are usually 

sodium, calcium and magnesium, while the main anions 

associated with salinity were Cl-, SO4

-2 and HCO3- (Yadav 

et al. 2011). Plants are either glycophytes or halophytes 

depending on their potency for growing on different 

concentrations of salt. Halophytes are completely grows 

on steep dose of salt, Atriplex nummularia (a saltbush). A 

lot of the terrestrial plants are classified as glycophytic 

with low tolerance to salt high concentrations (Rasool et 

al. 2013). Plants with salt sensitivity and tolerance are 

differs in the speed of progression of salt toxicity, may be 

days or weeks or months, relying on the species of plant 

and salinity degree, is the timescale (Carillo et al. 2011). 

To study the effects of osmotic and ionic salt stress, 

(Munns et al. 1995) proposed a model of two-phase in 

which the first, osmotic phase, which commence instantly 

(within minutes) after the accumulation of salt near the 

roots increases to a threshold level which is nearly 40 mM 

of sodium chloride for most plants, or less in plants 

sensitive for salt such as Arabidopsis and rice, leading to 

a significant reduction in shoot growth because the root 

system hardly gets the needed water and also, due to a 

loss of cell wall extensibility (Läuchli and Grattan 2007; 

Le Gall et al. 2015; Munns and Tester 2008; Tilbrook and 

Roy 2013). 

Ion-specific, the second phase, is the stage at which 

plants respond to salinity (in days, weeks or months): salt 

accumulation in old leaves reaches to its toxic concen-

trations (which in turn stop their growth and prevent the 

dilution of salt arrives to them as occur in younger leaves) 

leading to their death, the inescapable destiny. If the death 

rate exceeds the production rate of new leaves, the 

photosynthesis process of the plant will not be able to 

cover carbohydrate demand of the newly growing leaves, 

which subsequently decreases the rate of their growth 

(Läuchli and Grattan 2007; Munns and Tester 2008).

Pre‐Sowing Seed Treatment

Different methods were used from past to present trying 

to adapt to different stresses, including traditional methods 

of breeding “hybridization and selection” and modern 

technologies as “mutation, polyploidy breeding and genome 

editing” (Jisha et al. 2013). Genetic engineering possesses 

in a reasonable manner being the affordable method due 

to the incorporation of targets, and heterologous traits to 

the elite crop lines. However, these methods are expensive, 

cumbersome requiring biosafety regulations that hinders 

the implementation of transgenic plants to the field (Jisha 

et al. 2013). The alternative solution would be more affordable, 

cost effective and can be adopted without complications 

(Jisha et al. 2013). Different research has been done to 

decrease the time between planting to development as this 

plays a fundamental role in the production of different 

crops. Seed priming technique is one of the results these 

researches. This technique was proposed for the first time 

by (Heydecker et al. 1973). Priming technique is an effective 

method for enhancing the quality of seed, increasing the 

rates for germination resulting in high resistance levels of 

stress and high yields production, improving the product 

competitiveness, correlating to seed vigour, that limited by 

various genetic and environmental traits (Paparella et al. 2015).

Priming of seeds is a pre-sowing of seeds by exposing 

to particular solutions for a specific time that enables 

partial entrance of water before emerging of radicle. When 

a dry non-dormant seeds were kept in water, imbibition, 

lag phase, and appearance of the radicle by the testa 

follows one another during the process of germination 

(Dalil 2014; Lutts et al. 2016; Singh et al. 2015). During 

priming the water supply to the seed is a limiting step, 

because it makes the level of seed moisture below its 

required level for exact germination. At this level the 

physiological processes controlling the pre-germination meta-

bolism can be started but the transition of seed towards its 

full germination is prevented. This precludes seeds from 

going through the third phase of hydration (growth) by 

stretching and detaining seeds within the lag phase (acti-

vation) (Ibrahim 2016; Singh et al. 2015). Being desiccation- 

tolerant, seeds have to be re-dried again to its initial 
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content of moisture before radicle emergence to preserve 

the benefits of the priming method (Ibrahim 2016; Mondal 

and Bose 2014). The seed should be dried at imbibition 

phase (I) or activation (II), but growth phase III is an 

advanced phase allowing re-drying keeping the seed quality. 

Post-radicle emergence seed dehydration leads to seed 

vigour damage and losing seed viability. Life expectancy 

of primed seeds is usually long on condition of a successful 

drying-back and storage (Ibrahim 2016; Paparella et al. 2015). 

Numerous factors affect priming efficiency and extremely 

relies on types of plant species and priming technique, 

namely osmotic, water potential, priming agent, duration, 

light, aeration, and seed type. All of these factors plays an 

important role in priming success and germination requriments 

(Lutts et al. 2016). The common priming techniques include 

hydropriming, osmopriming, hormopriming, thermopriming, 

chemopriming, and biopriming. Using osmotic solution 

with low water potential to soak the seeds in is known as 

osmopriming. The low potential of water used in the osmotic 

solutions, enables water to enter into seed slowly allowing 

the gradual activation of germination phases without occurrence 

of radicle emergence (Jisha et al. 2013; Lutts et al. 2016; 

Paparella et al. 2015). 

In priming by solid matrix (matriconditioning), solid or 

semi-solid matrix has been used replacing the liquid one 

(Jisha et al. 2013). Solid priming has been emerged as an 

alternative approach of osmopriming because of the high 

price and technical problems of osmopriming. In contrast 

to osmopriming in which liquid solutions (liquid priming) 

are used, in solid priming, a solid matrix is to coat the 

seeds, due its ability to adjust the moisture content and 

controlling water uptake (Fig. 1). This solid matrix allows 

slowly hydration of seeds (Jisha et al. 2013; Lutts et al. 

2016; Paparella et al. 2015). We can improve the seed 

germination of different crops by adding hormones and 

PGPR during priming process (Jisha et al. 2013). For 

example in hormopriming different regulators are used as 

ABA, auxins, GAs, polyamines, and SA (Lutts et al. 2016). 

Pre-sowing seeds at different temperatures is referred to as 

thermopriming, generally, the best results can be achieved 

at low temperatures. Although in some species priming 

with higher temperatures is preferable and gives a good 

germination results mainly for crops growing in warm 

climates (Paparella et al. 2015).

Chemopriming is the process in which seeds are treated 

with various chemicals before its germination. The priming 

process in this case can use different compounds (natural 

or synthetic) some of these compounds are ascorbic acid, 

urea, chitosan, sodium nitroprusside, and so on (Jisha et 

al. 2013; Lutts et al. 2016). In nutripriming, seeds were 

soaked in water containing different limiting nutrients 

instead of water alone. This method prove the important 

role of mineral nutrition in increasing the plant resistance 

to different types of stress (Jisha et al. 2013; Lutts et al. 2016). 

In hydropriming, soaking the seeds in water (distilled 

and sterilized) at room temperature (in a range from 5 to 

20°C) till hydration level in seeds equal to 10-20% of full 

absorption. As mentioned, it is important to dry the seeds 

soaked to their initial weights with air (Jisha et al. 2013; 

Paparella et al. 2015). Biopriming is the process in which 

seed hydration by soaking in water containing beneficial 

microbes, thus improving the viability of seed, germination 

rate, plant growth, protecting the plants from the diseases 

(microbial or physiological). Immersion of the seeds for 

12 h in water, is the recommended method of biopriming. 

The formulated of the microorganisms were added to the 

seeds (pre-immersed) at the level of 10 g/kg of the crop 

seeds and mixed with each other. The seeds were collected 

in polythene bags, and to maintain high level of humidity, 

the bags were covered with moist jute sack for two days 

at 30°C, allowing to the adherence biological agent to the 

seeds surface making a protective layer surrounding the 

seed coat (Afzal et al. 2016; Lutts et al. 2016; Prasad et 

al. 2016).

Role of Biopriming in Salt Stress Resilience

Several reports document that plants can better withstand 

salt stress by seed biopriming approach. Biopriming of 

durum wheat grains with Bacillus pumilus, Virgibacillus 

sp., B. pumilus, and B. tequilensis gave the highest protection 

against Fusarium disease, promote the plant growth, and 

salinity adaptation (Feto et al. 2019). Seed biopriming of 

rice (Oryza sativa) with five salinity adaptive isolates of 

Trichoderma harzianum gave a significant increase in 

length of shoot and root, leaves number, leaf area, rate of 

photosynthesis process, leaf content of chlorophyll and 

plant fresh weight comparing to salt stressed control plant 

(Rawat et al. 2012). Effect of Trichoderma lixii on Zea 

mays as a seed fungal biopriming agent was studied under 

sodium chloride stress. Authors observed a decrease 

amount of both hydrogen peroxide and MDA along with 

an increase in the content of soluble protein and proline 

(Pehlivan et al. 2017). Biopriming of Seeds using 

Pseudomonas geniculate (salt tolerant endophyte) caused a 

growth promotion and mitigated the salt stress in Zea 

mays. Application of P. geniculate reduced the sodium 

uptake and increased the uptake of potassium and calcium 
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in the roots of maize showing its role in controlling the 

ionic balance/homeostasis in the roots of maize under high 

salt stresses (Singh et al. 2020). Several studies studied the 

ability of five salinity tolerant isolates of T. harzianum 

applied via seed biopriming by attenuating the severity of 

salinity on wheat (Triticum aestivum L.). Fungal biopriming 

resulted in improved germination percentage, lengths of 

shoot and root systems, leaves content of chlorophyll and 

membrane stability index than control at all salt stress 

levels (Rawat et al. 2011). Biopriming of Brassica napus 

(canola) seeds using B. subtilis and Macrophomina phaseolina 

could enhance the germination index and alleviates the 

effects of salinity (Mousavi and Omidi 2019). Researchers 

should thereby study more to show the impact of seed 

biopriming with microbial inoculants on the removal of 

environmental stresses.

Stress Tolerance in Plants via Fungal Neighbours 

Plants lives in close association with the microorganisms 

either as neighbours in the soil, or especially those micro-

organisms lives internally in plants as endophytes (El-Baz 

et al. 2011a; El-Baz et al. 2017, 2018; Hardoim et al. 

2015). endophytic fungi can interact with many species 

and hence cause a significant contribution in the plant 

adaptation to different environmental stresses such as 

drought, heat, pathogens infect, insects infection, or 

nutrients limitation to the level at which some plants 

cannot preserve stress conditions in the absence of their 

endophytic microbes (Alsaggaf et al. 2020; de Zelicourt et 

al. 2013; El-Mekay et al. 2013, El-Baz et al. 2011b; 

El-Sayed et al. 2010, 2012). A growing interest in 

symptomless parasitic fungi ‘endophytes’ since the discovery 

of paclitaxel (Taxol, anticancer drug), from Pestalotiopsis 

microspora, a endophytic fungus that lives internally in the 

Himalayan yew tree Taxus wallichiana, without causing 

injury to its host plant (Maheshwari 2006). As well as, 

several fungal endophytes namely A. flavipes, A. terreus 

inhabiting Podocarpus gracilior were reported as potent 

Taxol producers, without any effect diseases symptoms on the 

plant (El-Sayed et al. 2015e, 2019a, 2019b, 2020, 2021). 

Also, Penicillium polonicum as endophyte of Ginko piloba 

were reported as potent Taxol producers without any 

apparent effect on the plant heath (Abdel-Fatah et al. 

2021). The endophytic fungus Aspergillus fumigatus of Vinca 

was reported for first time as Epothilones producer without 

any undesirable effect on the plant health (El-Sayed et al. 

2021; El-Sayed et al. 2015a, 2015b, 2015c, 2015d, 2015e, 

2016, 2019a). The potency of endophytic fungi for inhabiting 

various medicinal plant for production of diverse bioactive 

compounds were extensively studied (El-Sayed et al. 

2020a, 2020b, 2021). They lives entirely in the plant 

Fig. 1 The common recommended method for seed bio-priming
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tissues for whole or small part of their life cycle and cause 

no apparent infections and may grow inside the roots, 

stems and/or leaves, tending to forms spores with aging of 

their host-tissue (El-Sayed, 2009; Hallmann and Sikora 

2011; Maheshwari 2006; Mishra et al. 2014).

Fungal endophytes can affect both of plant growth and 

its responses to different factors as pathogenic organisms, 

grazing animals and environmental stresses through their 

ability to produce beneficial metabolites (Abdella et al. 

2018a, 2018b; Abdel-Monem et al. 2012; Porras-Alfaro 

and Bayman 2011). Endophytic fungi can be classified 

into two groups depending on their food uptake strategies: 

(1) facultative endophytes (obtaining their food from 

living and non-living dead organic matter), and (2) 

obligate endophytes (obtaining their food from living plant 

cells only) (Hallmann and Sikora 2011). Recently, by 

molecular analysis it was suggested that endophytic fungi 

can colonize the green plants by before plants colonized 

the land, by establishing a close contact (intercellularly 

and intracellularly) with the plant cells (Maheshwari 

2006). Endophytes can supress the defence mechanism of 

plants to prevent the pathogen attack to the plant 

depending on the way used by plants to detect the 

pathogens and endophytes as the plant uses the same set 

of genes (Maheshwari 2006).

Successful endophytic colonization undergoes numerous 

significant steps: finding the host plant, surface coloni-

zation of the plant and invasion of the internal tissue in 

plant. Some factors ease the entrance process of endophytic 

microbes to the plant tissues includes natural factors such 

as hydathodes, stomata and lenticels, and artificial factors 

as wounds caused by physical factors. Penetration of 

microbes to the cuticle surface and cell walls requires 

secretion of cell wall-degrading enzymes like cutinase, pectinase, 

cellulase, hemicellulase, protease and lignin-peroxidases. 

Plant endophytes can easily transmitted from one generation 

to another through plant seeds (Lata et al. 2018). To show 

whether Piriformospora indica infested plants would be 

more resistant to biotic stress or not, the barley was grown 

in soil infected with macroconidia of Fusarium culmorum 

a necrotrophic fungal pathogen (Waller et al. 2005). They 

found that fresh weight of shoot and root was decreased 

by two folds in plants infested with P. indica comparing 

to 12-fold reduction in controls with F. culmorum alone. 

Kannadan and Rudgers (2008). found that fungal endophyte 

Neotyphodium sp symbiosis positively affects the survival 

and growth of grove bluegrass ‘Poa alsodes’ under altered 

water availability. It was reported that under water-limitation 

stress for grove bluegrass, two treatments were used the 

first disinfected plants and the second endophyte-harbouring 

Table 1 Common priming techniques and the agents utilized in each case

Priming Concept Priming technique

Osmopriming/osmotic priming

halopriming

Immersion of the seeds in an osmotic solution of water with a low potential, rather than pure water.

Priming agents: Polyethylene glycol (PEG), mannitol, sorbitol, glycerol, and inorganic salts, such 

as sodium chloride (NaCl), potassium chloride (KCl), potassium nitrate (KNO3), potassium 

phosphate (K3PO4), and calcium chloride (CaCl2).

Solid matrix priming (SMP)/

solid priming

The seeds are mixed with a solid matrix (organic or inorganic) capable of adjusting the moisture 

content and controlling the uptake of water. 

Priming agents: Vermiculite, peat moss, charcoal, sand, clay

Hormopriming

The seeds are soaked in water with plant growth regulators and hormones, leading to an 

enhancement of seed germination.

Priming agents: Abscisic acid (ABA), auxins (AU), gibberellins (GAs), kinetin, ethylene, 

polyamines, and salicylic acid (SA).

Thermopriming
Pre-sowing seeds at different temperatures is referred to as thermopriming. 

Priming agent: Low temperatures or high temperatures.

Chemopriming

The seeds are soaked in different chemical solutions. 

Priming agents: Ascorbic acid, glutathione, tocopherol, melatonin, and proline, H2O2, sodium 

nitroprusside, urea, thiourea, mannose, chitosan, fungicides, etc.

Hydropriming/

On-farm priming

The seeds are soaked in sterilized distilled water and then re-dried using air to their original case.

Priming agent: Sterilized distilled water 

Biopriming/

biological seed treatment

A combination of seed hydration by soaking; then, the seeds can be inoculated with beneficial 

microbes. 

Priming agents: Beneficial microbes
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plants and the result showed that disinfected plants had 

bigger leaf aging than endophyte-harbouring plants, showing 

the positive role of endophytes symbiosis in amelioration 

the negative drought stress effects (Kannadan and Rudgers 

2008). In another work, Song et al. (2015) demonstrated 

that Epichlё sp. endophyte infected wild barley plants 

producing significantly higher content of chlorophyll in 

leaves, high lengths of roots and shoots and higher plant 

biomass comparing to plants free of endophytes under 

waterlogging stress. They also had more proline production, 

low content of malondialdehyde and low leakage of 

electrolyte, meaning that the endophytic microbe alleviated 

the damage in waterlogged barley host plants. 

In terms of investigating the role of fungal endophytes 

in ameliorating the heavy metal stressor, Yamaji et al. 

(2016) found that in absence Clethra barbinervis (root 

endophytic fungus), could hardly grow under the high 

levels of heavy-metal, showing chlorosis. Waqas et al. 

(2015) reported that endophytic association of Paecilomyces 

formosus without any stress and increase heat stress 

conditions significantly, enhanced the growth of japonica 

and resulted in an increase in height, fresh and dry weight, 

and plant content of chlorophyll. P. formosus also increased 

the total protein content and lowered endogenous level of 

stress-signalling compounds such as jasmonic and abscisic 

acid and finally protected the rice plants from heat stress 

comparing to the controls. Redman et al. (2011) assessed 

the ability of Curvularia protuberata to confer cold 

tolerance to rice plants (below 20°C). Results showed that 

symbiotic seedlings had development (appearance of roots 

and shoot) frequencies of greater than 90% at all of the 

temperatures tested. In agreement with the studies above, 

some other works showed the positive impact of fungal 

endophytes on salt-stressed plants as well. For instance, 

Ahmad et al. (2015) showed that adding of Trichoderma 

harzianum to NaCl treated mustard “Brassica juncea” 

seedlings showed enhancement in lengths of root and 

shoot, plant dry weight, pigment and proline contents, 

SOD, POD, APX, GR, GST, GPX, GSH, and GSSG 

comparing to plants treated with sodium chloride (200 

mM) alone. Also, a decrease in the accumulation of both 

hydrogen peroxide and MDA was reported by adding of 

T. harzianum to NaCl fed mustard seedlings. The effect of 

moderate (100 mM NaCl) salt stress was abolished completely 

by Piriformospora indica, as reported the infested plants 

produced large biomass than produced by control (non- 

stressed) plants under the same condition conditions (Waller 

et al. 2005). Similarly, while working with barely, it has 

been reported recently that the endophytic fungus Epichloë 

bromicola might help the Hordeum brevisubulatum plants 

to stand salt stress by stimulating the conversion of 

putrescine to spermine and spermidine, as well as shifting 

the ability of polyamines free and soluble conjugated 

forms to its bound insoluble forms (Chen et al. 2019). 

Phytohormones: Alleviation Mechanism adopted by Endophytic 

Fungi

Plants adaptation to stress follow two mechanisms: (1) 

activation of stress response systems in the host quickly 

after exposure to stress, and (2) secondary metabolites 

biosynthesis (anti-stress compound) by endophytic microbes 

(Lata et al. 2018; Singh et al. 2011). Plant hormones 

works as central connector that link and reprogram the 

complex development and stress adaptation signalling 

cascades (Golldack et al. 2014). In this section we will 

consider how phytohormones come into play to avoid salt 

injury. In a study, on two rice varieties differ in their 

sensitivity to salt, growth reprogramming and building up 

of an adaptation program leading to specific responses 

(morphological and physiological) and growth yield under 

salt stress was backed to the speed of hormonal meta-

bolism regulation in the tolerant variety (Formentin et al. 

2018; Patel et al. 2016). The plant growth and develop-

ment are mainly regulated by auxins. different studies 

showed the role of auxin in plants response to salinity 

stress, but unfortunately, there is no enough available 

information about auxin mechanisms in salt stress 

regulation (Fahad et al. 2015; Ryu and Cho 2015). It has 

been reported that auxin-induced mitigation of the salinity 

effects of on maize plants was linked with the increment 

in the concentration of photosynthetic pigments and leaf 

sodium/potassium ratio and the reduction in membrane 

permeability (Kaya et al. 2013). Overexpression of TaSAUR75, 

small auxin upregulated RNAs (SAURs), was regulated by 

auxin and different environmental factors, intensified drought 

and salt adaptation in Arabidopsis. Genetically modified 

plant lines displayed higher length of root and survival 

rate and the expression of some stress-response genes was 

high than that of control plants (Guo et al. 2018).

Gibberellins are important for plants during their life 

cycle for growth-stimulation purpose (Wani et al. 2016). 

During plants exposure to salinity stress a rapid accumulation 

of gibberellic acid (GA) will occur (Kaya et al. 2009). In 

a study conducted by (Iqbal and Ashraf 2013), induced 

increase in grain yield was linked to the gibberellins- 

priming stimulated modulation of ions uptake under salinity 

stress. Similarly, while working with Olea europaea, researchers 
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found that using gibberellin via reducing the concen-

trations of sodium and chloride in olive plants, but increasing 

the amount of potassium chlorophyll and proline (Shekafandeh 

et al. 2017). 

Cytokinins (CKs) achive abiotic stress adaptation in higher 

plants, may be through modulating various components of 

the photosynthetic machinery under abiotic stress conditions 

(Fahad et al. 2015; Gururani et al. 2015). A transcriptomic 

analysis showed that under salt stress, CK triggered trans-

criptional reprograming in Arabidopsis leaves that resulted 

in decreasing stress-dependent inhibition of vegetative growth 

and reduce premature plant aging (Golan, et al. 2017). Ma 

et al. (2016) showed that using of 6-benzylaminopurine 

alleviated the bad effects caused by salt stress in Perennial 

ryegrass by increasing the ability of enzymes associated 

with reactive oxygen species scavenging and suppression 

of sodium ion accumulation to keep a higher potassium/ 

sodium ratio attributed to the increased high-affinity K+ 

transporter expression. 

Accumulation of abscisic acid can alleviate the bad 

effect of salt stress on growth, photosynthesis, and trans-

location. High levels of abscisic acid hormone aids plants 

to grow under low water content by closing stomatal openings 

and accumulates virous proteins and osmoprotective agents 

for osmotic control (Gupta and Huang 2014; Ryu and Cho 

2015). The Arabidopsis abscisic acid -deficient mutants, 

aba1-3, died after exposure to higher salt concentration, 

implying that ABA provides a protective role in higher salt 

concentration (Cramer 2002). In a study, on rice, researchers 

reported the implication of ABA in the control of 

salt-induced cellular mechanisms resulting in sodium ion 

defamation from the cytoplasm (Pons et al. 2013).

Foliar spray of salt stressed-soybean with salicylic acid 

(SA) led to significant increase in chlorophyll, sugar, 

starch and proline contents, indicating that application of 

SA can overcome salinity (Jaiswal et al. 2014). Treatment 

of salicylic acid to saline soils enhanced also the salt 

tolerance in rice plants via less accumulation of sodium 

and chlorine ions, an increased concentration of endo-

genous SA level and augmented antioxidant enzymes such 

as superoxide dismutase, catalase and peroxidase (Jini and 

Joseph 2017; Khan et al. 2017). The cyclopentanone is a 

phytohormones produced from the metabolism of membrane 

fatty acids as jasmonates (methyl jasmonate (MeJA) and 

jasmonic acid) can activate the defence mechanisms of 

plant in response to wounding caused by insect, pathogenic 

organisms, and environmental stresses, such as drought, 

low or high temperature, and salts (Mann et al. 2015; 

Wani et al. 2016). OsJAZ9 is a member of the JAZ 

subfamily that belonging to the TIFY gene family in rice 

“Oryza sativa”, suppression of this gene resulted in 

reduction of salt tolerance. The altered salt adaptation was 

mainly due to changes in homeostasis of ion (especially 

K+), which was proved by the different expression levels 

of several ion transporters (Wu et al. 2015). Zhao et al. 

(2014), reported that salinity-response gene in bread wheat 

(TaAOC1 gene), encoding allene oxide cyclase involved 

in the metabolic pathway of α-linolenic acid, was highly 

expressed in both Arabidopsis and bread wheat. In both 

species, genetically modified lines showed an enhanced 

level of adaptation to salt (Zhao et al. 2014).

Different groups of organisms, such as fungi, bacteria, 

and plants are harbouring soils. Plant roots are the richest 

place colonized by microorganisms (compared to soil and 

other habitats) because of root exudates which are rich 

with nutrients. The rhizosphere area attracts different 

microbes that utilize the different nutrients released in the 

root exudates. Hence, these microbes plays an effective 

role in nutrition uptake and development and growth by 

producing biologically active secondary metabolites, as 

phytohormones (auxins, cytokinins, gibberellins and abscisic 

acid), and antimicrobial compounds. Also, they can 

increase plant resistance to different factors of biotic and 

abiotic stress, enhancing nutrient uptake and protect plants 

from different pathogenic soil-borne microbes (Egamberdieva 

et al. 2017). Microbes adopt their ability for synthesizing 

phytohormone in the rhizosphere for improving both plant 

growth and stress resistance. In plant tissue, microbial 

phytohormones affect the metabolic pathway of endogenous 

growth regulators and it are a limiting factor in changing 

root morphology upon exposure to different stresses as 

drought, salt, low and high temperature and toxicity of 

heavy metal (Chakraborty et al. 2015; Egamberdieva et al. 

2017). For example, Bastías et al. (2018) indicated the 

important role of salicylic acid a in regulating the acquired 

resistance by endophyte against herbivores. In addition, 

the culture application and endophytic-association of Phoma 

glomerata and Penicillium sp. significantly reprogrammed 

the growth of host cucumber plants during salt and drought 

stress conditions by means of secreting gibberellins and 

indole acetic acid (Waqas et al. 2012). Kang et al. (2014) 

found that the endogenous SA and GA4 contents were 

significantly higher in B. cepacia, A. calcoaceticus and 

Promicromonospora sp inoculated plants than non-inoculated 

cucumbers under both salinity and drought stresses. 

Iqbal et al. (2016) showed that inoculation of maize 

with auxin producing rhizobacterial stains enhanced grain 

yield, fresh biomass and grains contents of phosphorous 
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under saline field conditions. Results of Khan et al. (2012) 

revealed that upon salinity stress Paecilomyces formosus, 

a GAs and indole acetic acid secreting fungal strain, inoculation 

higher endogenous gibberellins (GA3, GA4, GA12 and 

GA20) contents in the tissue of cucumber plants which 

resulted in salinity stress modulation. Penicillium janthinellum 

association helped Sitiens plants, tomato abscisic acid 

(ABA)-deficient mutants, that had reduced the growth 

under normal and salt stress to synthesis significantly 

higher abscisic acid to modulate stress responses (Khan et 

al. 2013; Selvakumar et al. 2014). 

A study by Sajjad Asaf and colleagues reported that the 

combined treatment of soybean plants with Sphingomonas 

sp. along with trehalose imporoved endogenous jasmonic 

(JA) and abscisic (ABA) acid contents and allivated the 

negative effects of osmotic stress induced by drought 

(Asaf et al. 2017; Maamoun et al. 2021). It has also been 

reported that most of the alfalfa plants inoculated with 

engineered Sinorhizobium strains which overproducing zeatins 

survived under severe drought stress and the no apparent 

change for nitrogenase activity in their root nodules was 

reported (Rodriguez et al. 2009; Xu et al. 2012). 

In conclusion, preceding data presented in this review 

underpin the view that seed biopriming approach is a 

promising pre-sowing treatment conferring better tolerance 

to plants against diverse abiotic stressors. Steering research 

on fungal biopriming under salt stresses will help to 

enhance our knowledge and understanding of the action 

mechanisms adopted by fungal endophytes to reach to 

salinity tolerance in host plants.
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