• Title/Summary/Keyword: fundus image

Search Result 29, Processing Time 0.031 seconds

Development of Retina Healthcare Service System Using Smart Phone

  • Park, Gi Hun;Han, Ju Hyuck;Kim, Yong Suk
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.227-237
    • /
    • 2019
  • In this paper, we have developed a Retina Healthcare Service System through which the patient himself/herself can manage his/her retina health. In the case of conventional portable ophthalmic cameras, patients cannot check their eye health on their own because most of them are used by doctor in environments where ophthalmography cannot be performed properly. This system consists of web, app and camera modules, and when a patient mounts a camera module for fundus photography on his / her smart phone and then photographs his / her fundus through the app, the image is transmitted to a server, and the transmitted image reads the fundus the patient's fundus image status in the fundus image reading model learned using deep learning. When the doctor expresses his/her opinions about the patient 's eye condition based on the reading result and the fundus photograph, the patient can check through the app and judge whether to receive ophthalmologic treatment.

A Computationally Efficient Retina Detection and Enhancement Image Processing Pipeline for Smartphone-Captured Fundus Images

  • Elloumi, Yaroub;Akil, Mohamed;Kehtarnavaz, Nasser
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.79-82
    • /
    • 2018
  • Due to the handheld holding of smartphones and the presence of light leakage and non-balanced contrast, the detection of the retina area in smartphone-captured fundus images is more challenging than retinography-captured fundus images. This paper presents a computationally efficient image processing pipeline in order to detect and enhance the retina area in smartphone-captured fundus images. The developed pipeline consists of five image processing components, namely point spread function parameter estimation, deconvolution, contrast balancing, circular Hough transform, and retina area extraction. The results obtained indicate a typical fundus image captured by a smartphone through a D-EYE lens is processed in 1 second.

Glaucoma Detection of Fundus Images Using Convolution Neural Network (CNN을 이용한 안저 영상의 녹내장 검출)

  • Shin, B.S.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.636-638
    • /
    • 2022
  • This paper is a study to apply CNN(Convolution Neural Network) to fundus images for identifying glaucoma. Fundus images are evaluated in the field of medical diagnosis detection, which are diagnosing of blood vessels and nerve tissues, retina damage, various cardiovascular diseases and dementia. For the experiment, using normal image set and glaucoma image set, two types of image set are classifed by using AlexNet. The result performs that glaucoma with abnormalities are activated and characterized in feature map.

  • PDF

Segmentation of the Optic Nerve Head and theOptic Cup on Stereo Fundus Image (스테레오 안저 영상에서 시각신경원반과 시각신경패임의 분할)

  • Kim, P.-U.;Park, S.-H.;Lee, Y.-J.;Won, C.-H.;Seo, Y.-S.;Kim, M.-N.
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.492-501
    • /
    • 2005
  • In this paper, we proposed the new segmentation method of optic nerve head and optic cub to consider the depth of optic nerve head on stereo fundus image. We analyzed the error factor of stereo matching on stereo fundus image, and compensated them. For robust extraction of optic nerve head and optic cub, we proposed the modified active contour model to consider the 3D depth of optic nerve head. As experiment result to various stereo fundus images, we confirmed that proposed method can segment optic nerve head and optic cup effectively.

  • PDF

A Novel Fundus Image Reading Tool for Efficient Generation of a Multi-dimensional Categorical Image Database for Machine Learning Algorithm Training

  • Park, Sang Jun;Shin, Joo Young;Kim, Sangkeun;Son, Jaemin;Jung, Kyu-Hwan;Park, Kyu Hyung
    • Journal of Korean Medical Science
    • /
    • v.33 no.43
    • /
    • pp.239.1-239.12
    • /
    • 2018
  • Background: We described a novel multi-step retinal fundus image reading system for providing high-quality large data for machine learning algorithms, and assessed the grader variability in the large-scale dataset generated with this system. Methods: A 5-step retinal fundus image reading tool was developed that rates image quality, presence of abnormality, findings with location information, diagnoses, and clinical significance. Each image was evaluated by 3 different graders. Agreements among graders for each decision were evaluated. Results: The 234,242 readings of 79,458 images were collected from 55 licensed ophthalmologists during 6 months. The 34,364 images were graded as abnormal by at-least one rater. Of these, all three raters agreed in 46.6% in abnormality, while 69.9% of the images were rated as abnormal by two or more raters. Agreement rate of at-least two raters on a certain finding was 26.7%-65.2%, and complete agreement rate of all-three raters was 5.7%-43.3%. As for diagnoses, agreement of at-least two raters was 35.6%-65.6%, and complete agreement rate was 11.0%-40.0%. Agreement of findings and diagnoses were higher when restricted to images with prior complete agreement on abnormality. Retinal/glaucoma specialists showed higher agreements on findings and diagnoses of their corresponding subspecialties. Conclusion: This novel reading tool for retinal fundus images generated a large-scale dataset with high level of information, which can be utilized in future development of machine learning-based algorithms for automated identification of abnormal conditions and clinical decision supporting system. These results emphasize the importance of addressing grader variability in algorithm developments.

Automatic Detection of Optic Disc Boundary on Fundus Image (안저 영상에서 시신경유두의 윤곽선 자동 검출)

  • 김필운;홍승표;원철호;조진호;김명남
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • The Propose of this paper is hierarchical detection method for the optic disc in fundus image. We detected the optic disc boundary by using the Prior information. It is based on the anatomical knowledge of fundus which are the vessel information. the image complexity. and etc. The whole method can be divided into three stages . First, we selected the region of interest(ROI) which included optic disc region. This is used to calculate location and size of the optic disc which are prior knowledge to simplify image preprocessing. And then. we divided the fundus image into numberous regions with watershed algorithm and detected intial boundary of the optic disc by reducing the number of the separated regions in ROI. Finally, we have searching the defective parts of boundary as a result of serious vessel interference in order to detect the accurate boundary of optic disc and we have removing and interpolating them.

Optical Design of a Snapshot Nonmydriatic Fundus-imaging Spectrometer Based on the Eye Model

  • Zhao, Xuehui;Chang, Jun;Zhang, Wenchao;Wang, Dajiang;Chen, Weilin;Cao, Jiajing
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.151-160
    • /
    • 2022
  • Fundus images can reflect ocular diseases and systemic diseases such as glaucoma, diabetes mellitus, and hypertension. Thus, research on fundus-detection equipment is of great importance. The fundus camera has been widely used as a kind of noninvasive detection equipment. Most existing devices can only obtain two-dimensional (2D) retinal-image information, yet the fundus of the human eye also has spectral characteristics. The fundus has many pigments, and their different distributions in the eye lead to dissimilar tissue penetration for light waves, which can reflect the corresponding fundus structure. To obtain more abundant information and improve the detection level of equipment, a snapshot nonmydriatic fundus imaging spectral system, including fundus-imaging spectrometer and illumination system, is studied in this paper. The system uses a microlens array to realize snapshot technology; information can be obtained from only a single exposure. The system does not need to dilate the pupil. Hence, the operation is simple, which reduces its influence on the detected object. The system works in the visible and near-infrared bands (550-800 nm), with a volume less than 400 mm × 120 mm × 75 mm and a spectral resolution better than 6 nm.

Local Feature Detection on the Ocular Fundus Fluorescein angiogram Using Relaxation Process (이완법을 이용한 형광안저화상의 국소특징 검출)

  • 高昌林
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.856-862
    • /
    • 1987
  • An local adaptive image segmentatin algorithm for local feature detection and effective clustering of unimodal histogram shape are proposed. Local adaptive difference image and its histogram are obtained from the input image. The parameters are derived from the histogram and used for the segmentation based on relaxatin process. The results showed effective region segmentation and good noise cleaning for the ocular fundus fluorescein angiogram which has low contrast and unimodal histogram.

  • PDF

From Masked Reconstructions to Disease Diagnostics: A Vision Transformer Approach for Fundus Images (마스크된 복원에서 질병 진단까지: 안저 영상을 위한 비전 트랜스포머 접근법)

  • Toan Duc Nguyen;Gyurin Byun;Hyunseung Choo
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.557-560
    • /
    • 2023
  • In this paper, we introduce a pre-training method leveraging the capabilities of the Vision Transformer (ViT) for disease diagnosis in conventional Fundus images. Recognizing the need for effective representation learning in medical images, our method combines the Vision Transformer with a Masked Autoencoder to generate meaningful and pertinent image augmentations. During pre-training, the Masked Autoencoder produces an altered version of the original image, which serves as a positive pair. The Vision Transformer then employs contrastive learning techniques with this image pair to refine its weight parameters. Our experiments demonstrate that this dual-model approach harnesses the strengths of both the ViT and the Masked Autoencoder, resulting in robust and clinically relevant feature embeddings. Preliminary results suggest significant improvements in diagnostic accuracy, underscoring the potential of our methodology in enhancing automated disease diagnosis in fundus imaging.

Two-Branch Classifier for Retinal Imaging Analysis (망막 영상 분석을 위한 두 갈래 분류기)

  • Oh, Young-tack;Park, Hyunjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.614-616
    • /
    • 2021
  • The world faces difficulties in terms of eye care, including treatment, quality of prevention, vision rehabilitation services, and scarcity of trained eye care experts. However, it is difficult to develop a method for classifying various ocular diseases because the existing dataset for retinal image disclosure does not consist of various diseases found in clinical practice. We propose a method for classifying ocular diseases using the Retinal Fundus Multi-disease Image Dataset (RFMiD), a dataset published in the ISBI-2021 challenge. Our goal is to develop a robust and generalizable model for screening retinal images into normal and abnormal categories. The performance of the proposed model shows a value of 0.9782 for the test dataset as an area under the curve (AUC) score.

  • PDF