• Title/Summary/Keyword: functionally graded anisotropic materials

Search Result 4, Processing Time 0.017 seconds

Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.55-66
    • /
    • 2019
  • This work deals with the size-dependent wave propagation analysis of functionally graded (FG) anisotropic nanoplates based on a nonlocal strain gradient refined plate model. The present model incorporates two scale coefficients to examine wave dispersion relations more accurately. Material properties of FG anisotropic nanoplates are exponentially varying in the z-direction. In order to solve the governing equations for bulk waves, an analytical method is performed and wave frequencies and phase velocities are obtained as a function of wave number. The influences of several important parameters such as material graduation exponent, geometry, Winkler-Pasternak foundation parameters and wave number on the wave propagation of FG anisotropic nanoplates resting on the elastic foundation are investigated and discussed in detail. It is concluded that these parameters play significant roles on the wave propagation behavior of the nanoplates. From the best knowledge of authors, it is the first time that FG nanoplate made of anisotropic materials is investigated, so, presented numerical results can serve as benchmarks for future analysis of such structures.

A Boundary Integral Equation Formulation for an Unsteady Anisotropic-Diffusion Convection Equation of Exponentially Variable Coefficients and Compressible Flow

  • Azis, Mohammad Ivan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.557-581
    • /
    • 2022
  • The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.

Effects of triaxial magnetic field on the anisotropic nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.361-374
    • /
    • 2017
  • In this study, the influences of triaxial magnetic field on the wave propagation behavior of anisotropic nanoplates are studied. In order to include small scale effects, nonlocal strain gradient theory has been implemented. To study the nanoplate as a continuum model, the three-dimensional elasticity theory is adopted in Cartesian coordinate. In our study, all the elastic constants are considered and assumed to be the functions of (x, y, z), so all kind of anisotropic structures such as hexagonal and trigonal materials can be modeled, too. Moreover, all types of functionally graded structures can be investigated. eigenvalue method is employed and analytical solutions for the wave propagation are obtained. To justify our methodology, our results for the wave propagation of isotropic nanoplates are compared with the results available in the literature and great agreement is achieved. Five different types of anisotropic structures are investigated in present paper and then the influences of wave number, material properties, nonlocal and gradient parameter and uniaxial, biaxial and triaxial magnetic field on the wave propagation analysis of anisotropic nanoplates are presented. From the best knowledge of authors, it is the first time that three-dimensional elasticity theory and nonlocal strain gradient theory are used together with no approximation to derive the governing equations. Moreover, up to now, the effects of triaxial magnetic field have not been studied with considering size effects in nanoplates. According to the lack of any common approximations in the displacement field or in elastic constant, present theory has the potential to be used as a bench mark for future works.

Investigation of wave propagation in anisotropic plates via quasi 3D HSDT

  • Bouanati, Soumia;Benrahou, Kouider Halim;Atmane, Hassen Ait;Yahia, Sihame Ait;Bernard, Fabrice;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.85-96
    • /
    • 2019
  • A free vibration analysis and wave propagation of triclinic and orthotropic plate has been presented in this work using an efficient quasi 3D shear deformation theory. The novelty of this paper is to introducing this theory to minimize the number of unknowns which is three; instead four in other researches, to studying bulk waves in anisotropic plates, other than it can model plates with great thickness ratio, also. Another advantage of this theory is to permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Hamilton's equations are a very potent formulation of the equations of analytic mechanics; it is used for the development of wave propagation equations in the anisotropic plates. The analytical dispersion relationship of this type of plate is obtained by solving an eigenvalue problem. The accuracy of the present model is verified by confronting our results with those available in open literature for anisotropic plates. Moreover Numerical examples are given to show the effects of wave number and thickness on free vibration and wave propagation in anisotropic plates.