• Title/Summary/Keyword: functionally graded Porous material

Search Result 119, Processing Time 0.018 seconds

Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory

  • Bennai, Riadh;Atmane, Hassen Ait;Ayache, Belqassim;Tounsi, Abdelouahed;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.547-561
    • /
    • 2019
  • In this work, a new analytical approach using a theory of a high order hyperbolic shear deformation theory (HSDT) has been developed to study the free vibration of plates of functionally graduated material (FGM). This theory takes into account the effect of stretching the thickness. In contrast to other conventional shear deformation theories, the present work includes a new displacement field that introduces indeterminate integral variables. During the manufacturing process of these plates defects can appear as porosity. The latter can question and modify the global behavior of such plates. The materials constituting the plate are assumed to be gradually variable in the direction of height according to a simple power law distribution in terms of the volume fractions of the constituents. The motion equations are derived by the Hamilton principle. Analytical solutions for free vibration analysis are obtained for simply supported plates. The effects of stretching, the porosity parameter, the power law index and the length / thickness ratio on the fundamental frequencies of the FGM plates are studied in detail.

Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment

  • Karami, Behrouz;Shahsavari, Davood;Janghorban, Maziar;Li, Li
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.191-207
    • /
    • 2020
  • This study aims at investigating the size-dependent free vibration of porous nanoplates when exposed to hygrothermal environment and rested on Kerr foundation. Based on the modified power-law model, material properties of porous functionally graded (FG) nanoplates are supposed to change continuously along the thickness direction. The generalized nonlocal strain gradient elasticity theory incorporating three scale factors (i.e. lower- and higher-order nonlocal parameters, strain gradient length scale parameter), is employed to expand the assumption of second shear deformation theory (SSDT) for considering the small size effect on plates. The governing equations are obtained based on Hamilton's principle and then the equations are solved using an analytical method. The elastic Kerr foundation, as a highly effected foundation type, is adopted to capture the foundation effects. Three different patterns of porosity (namely, even, uneven and logarithmic-uneven porosities) are also considered to fill some gaps of porosity impact. A comparative study is given by using various structural models to show the effect of material composition, porosity distribution, temperature and moisture differences, size dependency and elastic Kerr foundation on the size-dependent free vibration of porous nanoplates. Results show a significant change in higher-order frequencies due to small scale parameters, which could be due to the size effect mechanisms. Furthermore, Porosities inside of the material properties often present a stiffness softening effect on the vibration frequency of FG nanoplates.

Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections

  • Ahmed, Ridha A.;Fenjan, Raad M.;Faleh, Nadhim M.
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.175-180
    • /
    • 2019
  • This research is concerned with post-buckling investigation of nano-scaled beams constructed from porous functionally graded (FG) materials taking into account geometrical imperfection shape. Hence, two types of nanobeams which are perfect and imperfect have been studied. Porous FG materials are classified based on even or uneven porosity distributions. A higher order nonlinear refined beam theory is used in the present research. Both perfect and imperfect nanobeams are formulated based on this refined theory. A detailed study is provided to understand the effects of geometric imperfection, pore distribution, material distribution and small scale effects on buckling of FG nanobeams.

Nonlinear bending analysis of bidirectional graded porous plates with elastic foundations relative to neutral surface

  • Amr E. Assie
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.2
    • /
    • pp.129-152
    • /
    • 2024
  • The applicability of a novel incremental-iterative technique with 2D differential/integral quadrature method (DIQM) in analyzing the nonlinear behavior of Bi-directional functionally graded (BDFG) porous plate based on neutral surface is verified in the present works. A formulation of four variables high shear deformation theory is used to describe the kinematic relations with respect to neutral surface rather than mid-plane. Bi-directional material distributions are presented by power functions through both thickness and axial directions. Porosities and voids are distributed by different cosine functions. The large deformations are included within the sense of nonlinear von Kármán strains. The integro-differential equilibrium equations with associated modified boundary conditions are solved numerically and iteratively by using 2D DIQM. Model validations and parametric analysis are depicted to present the influence of neutral axis, nonlinear strains, gradation indices, elastic foundations, and modified boundary conditions on the static deflection in addition to normal and shear stresses. The proposed model is effective in analyzing the static behavior of many real applications in nuclear reactors, marine and aerospace structures with large deformations.

Wave dispersion properties in imperfect sigmoid plates using various HSDTs

  • Batou, Belaid;Nebab, Mokhtar;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdeldjebbar;Bouremana, Mohammed
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.699-716
    • /
    • 2019
  • In this paper, wave propagations in sigmoid functionally graded (S-FG) plates are studied using new Higher Shear Deformation Theory (HSDT) based on two-dimensional (2D) elasticity theory. The current higher order theory has only four unknowns, which mean that few numbers of unknowns, compared with first shear deformations and others higher shear deformations theories and without needing shear corrector. The material properties of sigmoid functionally graded are assumed to vary through thickness according sigmoid model. The S-FG plates are supposed to be imperfect, which means that they have a porous distribution (even and uneven) through the thickness of these plates. The governing equations of S-FG plates are derived employed Hamilton's principle. Using technique of Navier, differential equations of S-FG in terms displacements are solved. Extensive results are presented to check the efficient of present methods to predict wave dispersion and velocity wave in S-FG plates.

Application of hyperbolic shear deformation theory to free vibration analysis of functionally graded porous plate with piezoelectric face-sheets

  • Arefi, M.;Meskini, M.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.459-467
    • /
    • 2019
  • In this paper, hyperbolic shear deformation theory is used for free vibration analysis of piezoelectric rectangular plate made of porous core. Various types of porosity distributions for the porous material is used. To obtain governing equations of motion, Hamilton's principle is used. The Navier's method is used to obtain numerical results of the problem in terms of significant parameters. One can conclude that free vibration responses are changed significantly with change of important parameters such as various porosities and dimensionless geometric parameters such as thickness to side length ratio and ratio of side lengths.

Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory

  • Atmane, Redhwane Ait;Mahmoudi, Noureddine;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.95-107
    • /
    • 2021
  • In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.

Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates

  • Ebrahimi, Farzad;Jafari, Ali;Mahesh, Vinyas
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.113-129
    • /
    • 2019
  • A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Study on stability and free vibration behavior of porous FGM beams

  • Bennai, Riadh;Atmane, Redhwane Ait;Bernard, Fabrice;Nebab, Mokhtar;Mahmoudi, Noureddine;Atmane, Hassen Ait;Aldosari, Salem Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.67-82
    • /
    • 2022
  • In this paper, buckling and free vibration of imperfect, functionally graded beams, including porosities, are investigated, using a higher order shear strain theory. Due to defects during the manufacturing process, micro porosities may appear in the material, hence the appearance of this imperfection in the structure. The material properties of the beams are assumed to vary regularly, with power and sigmoid law, in the direction of thickness. A novel porosity distribution affecting the functionally graded volume fraction is presented. For the compact formulation used for cementite-based materials and already used in P-FGM, we have adapted it for the distribution of S-FGM. The equations of motion in the FG beam are derived using Hamilton's principle. The boundary conditions for beam FG are assumed to be simply supported. Navier's solution is used to obtain the closed form solutions of the FG beam. The numerical results of this work are compared with those of other published research to verify accuracy and reliability. The comparisons of different shear shape functions, the influence of porosity, thickness and inhomogeneity parameters on buckling and free vibration of the FG beam are all discussed. It is established that the present work is more precise than certain theories developed previously.

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.